Perfusion imaging using dynamic susceptibility contrast MRI is widely used in management of brain ischemia and stroke. It is based on change in T2* effect arising from local field inhomogeneity as the contrast flow from the tissue capillary network. Quantitative analysis is completely based on the mathematical understanding of the underlying capillary network model, either a simplified model based approach or a complex model free methods have been used in literature. There are pros and cons of each method, this lecture will discuss few of these important methods and there benefits and limitations.
1 Villringer A, Rosen BR, Belliveau JW, Ackerman JL, Lauffer RB, Buxton RB et al. Dynamic imaging with lanthanide chelates in normal brain: contrast due to magnetic susceptibility effects. Magn Reson Med 1988; 6: 164–74.
2 Meier P, Zierler KL. On the theory of the indicator-dilution method for measurement of blood flow and volume. J Appl Physiol 1954; 6: 731–44.
3 Østergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis. Magn Reson Med 1996; 36: 715–25.
4 Zierler KL. Theoretical basis of indicator-dilution methods for measuring flow and volume. Circ Res 1962; 10: 393–407.
5 Gobbel GT, Fike JR. A deconvolution method for evaluating indicator-dilution curves. Phys Med Biol 1994; 39: 1833–54.
6 Zierler KL. Equations for measuring blood flow by external monitoring of radioisotopes. Circ Res 1965; 16: 309–21.
7 Axel L. Cerebral blood flow determination by rapid-sequence computed tomography: theoretical analysis. Radiology 1980; 137: 679–86.
8 Mehndiratta A, Calamante F, MacIntosh BJ, Crane DE, Payne SJ, Chappell MA. Modeling the residue function in DSC-MRI simulations: Analytical approximation to in vivo data. Magn Reson Med 2014; 72: 1486–91.
9 Jacquez J. Compartmental analysis in biology and medicine: kinetics of distribution of tracer-labeled materials. Elsevier: Amsterdam, 1972http://www.worldcat.org/title/compartmental-analysis-in-biology-and-medicine-kinetics-of-distribution-of-tracer-labeled-materials/oclc/605657126 (accessed 2 Nov2011).
10 Jerosch-Herold M. Quantification of myocardial perfusion by cardiovascular magnetic resonance. J Cardiovasc Magn Reson Off J Soc Cardiovasc Magn Reson 2010; 12: 57.
11 Mouridsen K, Friston K, Hjort N, Gyldensted L, Østergaard L, Kiebel S. Bayesian estimation of cerebral perfusion using a physiological model of microvasculature. Neuroimage 2006; 33: 570–9.
12 Rempp KA, Brix G, Wenz F, Becker CR, Gückel F, Lorenz WJ. Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast-enhanced MR imaging. Radiology 1994; 193: 637–41.
13 Wu O, Østergaard L, Weisskoff RM, Benner T, Rosen BR, Sorensen AG. Tracer arrival timing-insensitive technique for estimating flow in MR perfusion-weighted imaging using singular value decomposition with a block-circulant deconvolution matrix. Magn Reson Med 2003; 50: 164–74.
14 Calamante F, Gadian DG, Connelly A. Quantification of bolus-tracking MRI: Improved characterization of the tissue residue function using Tikhonov regularization. Magn Reson Med 2003; 50: 1237–47.
15 Vonken EP, Beekman FJ, Bakker CJ, Viergever MA. Maximum likelihood estimation of cerebral blood flow in dynamic susceptibility contrast MRI. Magn Reson Med 1999; 41: 343–50.
16 Andersen IK, Szymkowiak A, Rasmussen CE, Hanson LG, Marstrand JR, Larsson HBW et al. Perfusion quantification using Gaussian process deconvolution. Magn Reson Med 2002; 48: 351–61.
17 Zanderigo F, Bertoldo A, Pillonetto G, Cobelli Ast C. Nonlinear stochastic regularization to characterize tissue residue function in bolus-tracking MRI: assessment and comparison with SVD, block-circulant SVD, and Tikhonov. IEEE Trans Biomed Eng 2009; 56: 1287–97.
18 Mehndiratta A, Macintosh BJ, Crane DE, Payne SJ, Chappell MA. A control point interpolation method for the non-parametric quantification of cerebral haemodynamics from dynamic susceptibility contrast MRI. Neuroimage 2013; 64: 560–570.
19 Mehndiratta A. Quantitative measurements of cerebral hemodynamics using magnetic resonance imaging. 2014.https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.604531.
20 Calamante F, Gadian DG, Connelly A. Delay and dispersion effects in dynamic susceptibility contrast MRI: Simulations using singular value decomposition. Magn Reson Med 2000; 44: 466–473.
21 Calamante F, Gadian DG, Connelly A. Quantification of perfusion using bolus tracking magnetic resonance imaging in stroke: Assumptions, limitations, and potential implications for clinical use. Stroke 2002; 33: 1146–1151.
22 Calamante F. Artifacts and pitfalls in perfusion MR imaging. In: Gillard J, Waldman A, Barker P (eds). Clinical MR Neuroimaging: diffusion, perfusion and spectroscopy. Cambridge University Press, 2005, pp 141–160.
23 Iida H, Kanno I, Miura S, Murakami M, Takahashi K, Uemura K. Error analysis of a quantitative cerebral blood flow measurement using H2(15)O autoradiography and positron emission tomography, with respect to the dispersion of the input function. J Cereb blood flow Metab Off J Int Soc Cereb Blood Flow Metab 1986; 6: 536–45.
24 Calamante F, Willats L, Gadian DG, Connelly A. Bolus delay and dispersion in perfusion MRI: implications for tissue predictor models in stroke. Magn Reson Med Off J Soc Magn Reson Med / Soc Magn Reson Med 2006; 55: 1180–5.
25 Schmidt R, Graafen D, Weber S, Schreiber LM. Computational fluid dynamics simulations of contrast agent bolus dispersion in a coronary bifurcation: impact on MRI-based quantification of myocardial perfusion. Comput Math Methods Med 2013; 2013: 513187.
26 Mehndiratta A, Calamante F, MacIntosh BJ, Crane DE, Payne SJ, Chappell MA. Modeling and Correction of Bolus Dispersion Effects in Dynamic Susceptibility Contrast MRI. Magn Reson Med 2014. doi:10.1002/mrm.25077.