Magnetic resonance imaging (MRI) yields exquisite soft tissue contrast. This lecture focuses on longitudinal relaxation and magnetization transfer (MT) as contrast mechanisms. For both contrast mechanisms the basic theoretical description and definitions are introduced. It is discussed how they are affected by microstructural characteristics, particularly macromolecular content and myelination in the brain. Different acquisition and analysis methods are described for sensing and quantifying the longitudinal relaxation time (T1) and parameters of MT. Examples of the use of T1 and MT mapping in neuroimaging with a focus on myelin mapping are explored.
[1] M. Cercignani, N. G. Dowell, and P. S. Tofts, Quantitative MRI of the Brain: Principles of Physical Measurement, 2nd ed. 2018.
[2] F. Bloch, “Nuclear Induction,” Phys. Rev., vol. 70, no. 7–8, pp. 460–474, Oct. 1946, doi: 10.1103/PhysRev.70.460.
[3] N. Bloembergen, E. M. Purcell, and R. V. Pound, “Relaxation Effects in Nuclear Magnetic Resonance Absorption,” Phys. Rev., vol. 73, no. 7, pp. 679–712, Apr. 1948, doi: 10.1103/PhysRev.73.679.
[4] S. H. Koenig, “Classes of hydration sites at protein-water interfaces: the source of contrast in magnetic resonance imaging,” Biophys. J., vol. 69, no. 2, pp. 593–603, Aug. 1995, doi: 10.1016/S0006-3495(95)79933-7.
[5] W. D. Rooney et al., “Magnetic field and tissue dependencies of human brain longitudinal 1H2O relaxation in vivo,” Magn. Reson. Med. Off. J. Soc. Magn. Reson. Med. Soc. Magn. Reson. Med., vol. 57, no. 2, pp. 308–318, Feb. 2007, doi: 10.1002/mrm.21122.
[6] B. Halle and V. P. Denisov, “A new view of water dynamics in immobilized proteins.,” Biophys. J., vol. 69, no. 1, pp. 242–249, Jul. 1995.
[7] S. H. Koenig, “Cholesterol of myelin is the determinant of gray-white contrast in MRI of brain,” Magn. Reson. Med., vol. 20, no. 2, pp. 285–291, Aug. 1991.
[8] N. Stikov, M. Boudreau, I. R. Levesque, C. L. Tardif, J. K. Barral, and G. B. Pike, “On the accuracy of T1 mapping: searching for common ground,” Magn. Reson. Med., vol. 73, no. 2, pp. 514–522, Feb. 2015, doi: 10.1002/mrm.25135.
[9] D. C. Look and D. R. Locker, “Time Saving in Measurement of NMR and EPR Relaxation Times,” Rev. Sci. Instrum., vol. 41, no. 2, pp. 250–251, Feb. 1970, doi: 10.1063/1.1684482.
[10] N. J. Shah, M. Zaitsev, S. Steinhoff, and K. Zilles, “A new method for fast multislice T(1) mapping,” NeuroImage, vol. 14, no. 5, pp. 1175–1185, Nov. 2001, doi: 10.1006/nimg.2001.0886.
[11] J. P. Marques, T. Kober, G. Krueger, W. van der Zwaag, P.-F. Van de Moortele, and R. Gruetter, “MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field,” NeuroImage, vol. 49, no. 2, pp. 1271–1281, Jan. 2010, doi: 10.1016/j.neuroimage.2009.10.002.
[12] R. Venkatesan, W. Lin, and E. M. Haacke, “Accurate determination of spin-density and T1 in the presence of RF-field inhomogeneities and flip-angle miscalibration,” Magn. Reson. Med., vol. 40, no. 4, pp. 592–602, Oct. 1998, doi: 10.1002/mrm.1910400412.
[13] H. Z. Wang, S. J. Riederer, and J. N. Lee, “Optimizing the precision in T1 relaxation estimation using limited flip angles,” Magn. Reson. Med., vol. 5, no. 5, pp. 399–416, Nov. 1987, doi: 10.1002/mrm.1910050502.
[14] G. Helms, H. Dathe, and P. Dechent, “Quantitative FLASH MRI at 3T using a rational approximation of the Ernst equation,” Magn Reson., vol. 59, no. 3, pp. 667–672, 2008.
[15] R.-M. Gracien et al., “How stable is quantitative MRI? - Assessment of intra- and inter-scanner-model reproducibility using identical acquisition sequences and data analysis programs,” NeuroImage, vol. 207, p. 116364, Feb. 2020, doi: 10.1016/j.neuroimage.2019.116364.
[16] Y. Lee, M. F. Callaghan, and Z. Nagy, “Analysis of the Precision of Variable Flip Angle T1 Mapping with Emphasis on the Noise Propagated from RF Transmit Field Maps,” Front. Neurosci., vol. 11, p. 106, 2017, doi: 10.3389/fnins.2017.00106.
[17] H. T. Edzes and E. T. Samulski, “The measurement of cross-relaxation effects in the proton NMR spin-lattice relaxation of water in biological systems: Hydrated collagen and muscle,” J. Magn. Reson. 1969, vol. 31, no. 2, pp. 207–229, Aug. 1978, doi: 10.1016/0022-2364(78)90185-3.
[18] H. M. McConnell, “Reaction Rates by Nuclear Magnetic Resonance,” J. Chem. Phys., vol. 28, no. 3, pp. 430–431, Aug. 2004, doi: 10.1063/1.1744152.
[19] S. D. Wolff and R. S. Balaban, “Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo,” Magn. Reson. Med. Off. J. Soc. Magn. Reson. Med. Soc. Magn. Reson. Med., vol. 10, no. 1, pp. 135–144, Apr. 1989. [20] R. M. Henkelman, X. Huang, Q. S. Xiang, G. J. Stanisz, S. D. Swanson, and M. J. Bronskill, “Quantitative interpretation of magnetization transfer,” Magn. Reson. Med., vol. 29, no. 6, pp. 759–766, Jun. 1993, doi: 10.1002/mrm.1910290607.
[21] G. Helms, H. Dathe, K. Kallenberg, and P. Dechent, “High-resolution maps of magnetization transfer with inherent correction for RF inhomogeneity and T1 relaxation obtained from 3D FLASH MRI,” Magn. Reson. Med. Off. J. Soc. Magn. Reson. Med. Soc. Magn. Reson. Med., vol. 60, no. 6, pp. 1396–1407, Dec. 2008, doi: 10.1002/mrm.21732.
[22] V. Dousset et al., “Experimental allergic encephalomyelitis and multiple sclerosis: lesion characterization with magnetization transfer imaging,” Radiology, vol. 182, no. 2, pp. 483–491, Feb. 1992.
[23] M. F. Callaghan, G. Helms, A. Lutti, S. Mohammadi, and N. Weiskopf, “A general linear relaxometry model of R1 using imaging data,” Magn. Reson. Med., vol. 73, no. 3, pp. 1309–1314, Mar. 2015, doi: 10.1002/mrm.25210.
[24] K. Schmierer, F. Scaravilli, D. R. Altmann, G. J. Barker, and D. H. Miller, “Magnetization transfer ratio and myelin in postmortem multiple sclerosis brain,” Ann. Neurol., vol. 56, no. 3, pp. 407–415, Sep. 2004, doi: 10.1002/ana.20202.
[25] C. Stüber et al., “Myelin and iron concentration in the human brain: a quantitative study of MRI contrast,” NeuroImage, vol. 93 Pt 1, pp. 95–106, Jun. 2014, doi: 10.1016/j.neuroimage.2014.02.026.
[26] G. Helms, B. Draganski, R. Frackowiak, J. Ashburner, and N. Weiskopf, “Improved segmentation of deep brain grey matter structures using magnetization transfer (MT) parameter maps,” Neuroimage, vol. 47, no. 1, pp. 194–198, 2009.
[27] R. Deichmann, C. D. Good, O. Josephs, J. Ashburner, and R. Turner, “Optimization of 3-D MP-RAGE sequences for structural brain imaging,” Neuroimage., vol. 12, no. 1, pp. 112–127, Jul. 2000.
[28] K. J. Whitaker et al., “Adolescence is associated with genomically patterned consolidation of the hubs of the human brain connectome,” Proc. Natl. Acad. Sci. U. S. A., vol. 113, no. 32, pp. 9105–9110, 09 2016, doi: 10.1073/pnas.1601745113.
[29] V. S. Natu et al., “Apparent thinning of human visual cortex during childhood is associated with myelination,” Proc. Natl. Acad. Sci. U. S. A., vol. 116, no. 41, pp. 20750–20759, Oct. 2019, doi: 10.1073/pnas.1904931116.
[30] M. F. Callaghan et al., “Widespread age-related differences in the human brain microstructure revealed by quantitative magnetic resonance imaging,” Neurobiol. Aging, vol. 35, no. 8, pp. 1862–1872, Aug. 2014, doi: 10.1016/j.neurobiolaging.2014.02.008.
[31] P. Freund et al., “MRI investigation of the sensorimotor cortex and the corticospinal tract after acute spinal cord injury: a prospective longitudinal study,” Lancet Neurol., vol. 12, no. 9, pp. 873–881, Sep. 2013, doi: 10.1016/S1474-4422(13)70146-7.
[32] M. Filippi and M. A. Rocca, “Magnetization transfer magnetic resonance imaging of the brain, spinal cord, and optic nerve,” Neurotherapeutics, vol. 4, no. 3, pp. 401–413, Jul. 2007, doi: 10.1016/j.nurt.2007.03.002.