Multi-parameter mapping (MPM) based on multi-echo spoiled gradient echo acquisitions can provide estimates of the longitudinal relaxation rate (R1), effective transverse relaxation rate (R2*), proton density (PD) and magnetization transfer (MT) saturation. The basic data acquisition scheme is introduced together with the required data analysis and modelling steps. Important implementation aspects, potential pitfalls and limitations are discussed. Different examples are presented of how MPM are used for neuroimaging, including whole-brain and cortical microstructure imaging in aging and trauma of the central nervous system.
[1] N. Weiskopf et al., “Quantitative multi-parameter mapping of R1, PD*, MT, and R2* at 3T: a multi-center validation,” Front. Brain Imaging Methods, vol. 7, p. 95, 2013, doi: 10.3389/fnins.2013.00095.
[2] G. Helms, H. Dathe, K. Kallenberg, and P. Dechent, “High-resolution maps of magnetization transfer with inherent correction for RF inhomogeneity and T1 relaxation obtained from 3D FLASH MRI,” Magn. Reson. Med. Off. J. Soc. Magn. Reson. Med. Soc. Magn. Reson. Med., vol. 60, no. 6, pp. 1396–1407, Dec. 2008, doi: 10.1002/mrm.21732.
[3] K. Tabelow et al., “hMRI - A toolbox for quantitative MRI in neuroscience and clinical research,” NeuroImage, Jan. 2019, doi: 10.1016/j.neuroimage.2019.01.029.
[4] A. Lutti, C. Hutton, J. Finsterbusch, G. Helms, and N. Weiskopf, “Optimization and validation of methods for mapping of the radiofrequency transmit field at 3T,” Magn. Reson. Med. Off. J. Soc. Magn. Reson. Med. Soc. Magn. Reson. Med., vol. 64, no. 1, pp. 229–238, Jul. 2010, doi: 10.1002/mrm.22421.
[5] M. F. Callaghan et al., “Example dataset for the hMRI toolbox,” Data Brief, vol. 25, p. 104132, Aug. 2019, doi: 10.1016/j.dib.2019.104132.
[6] G. Helms, H. Dathe, and P. Dechent, “Quantitative FLASH MRI at 3T using a rational approximation of the Ernst equation,” Magn Reson., vol. 59, no. 3, pp. 667–672, 2008.
[7] N. Weiskopf, M. F. Callaghan, O. Josephs, A. Lutti, and S. Mohammadi, “Estimating the apparent transverse relaxation time (R2(*)) from images with different contrasts (ESTATICS) reduces motion artifacts,” Front. Neurosci., vol. 8, p. 278, 2014, doi: 10.3389/fnins.2014.00278.
[8] D. Papp, M. F. Callaghan, H. Meyer, C. Buckley, and N. Weiskopf, “Correction of inter-scan motion artifacts in quantitative R1 mapping by accounting for receive coil sensitivity effects,” Magn. Reson. Med., vol. 76, no. 5, pp. 1478–1485, 2016, doi: 10.1002/mrm.26058.
[9] S. Lorio et al., “Flexible proton density (PD) mapping using multi-contrast variable flip angle (VFA) data,” NeuroImage, vol. 186, pp. 464–475, 01 2019, doi: 10.1016/j.neuroimage.2018.11.023.
[10] A. Mezer, A. Rokem, S. Berman, T. Hastie, and B. A. Wandell, “Evaluating quantitative proton-density-mapping methods,” Hum. Brain Mapp., vol. 37, no. 10, pp. 3623–3635, 2016, doi: 10.1002/hbm.23264.
[11] S. Volz, U. Nöth, A. Jurcoane, U. Ziemann, E. Hattingen, and R. Deichmann, “Quantitative proton density mapping: correcting the receiver sensitivity bias via pseudo proton densities,” NeuroImage, vol. 63, no. 1, pp. 540–552, Oct. 2012, doi: 10.1016/j.neuroimage.2012.06.076.
[12] S. C. Deoni, T. M. Peters, and B. K. Rutt, “High-resolution T1 and T2 mapping of the brain in a clinically acceptable time with DESPOT1 and DESPOT2,” Magn Reson., vol. 53, no. 1, pp. 237–241, Jan. 2005, doi: 10.1002/mrm.20314 [doi].
[13] J.-F. Cabana et al., “Quantitative magnetization transfer imaging made easy with qMTLab: Software for data simulation, analysis, and visualization,” Concepts Magn. Reson. Part A, vol. 44A, no. 5, pp. 263–277, 2015, doi: 10.1002/cmr.a.21357.
[14] T. Wood, “QUIT: QUantitative Imaging Tools,” J. Open Source Softw., vol. 3, no. 26, p. 656, Jun. 2018, doi: 10.21105/joss.00656.
[15] H. Neeb, V. Ermer, T. Stocker, and N. J. Shah, “Fast quantitative mapping of absolute water content with full brain coverage,” NeuroImage, vol. 42, no. 3, pp. 1094–1109, Sep. 2008, doi: 10.1016/j.neuroimage.2008.03.060.
[16] V. L. Yarnykh, “Optimal radiofrequency and gradient spoiling for improved accuracy of T1 and B1 measurements using fast steady-state techniques,” Magn. Reson. Med. Off. J. Soc. Magn. Reson. Med. Soc. Magn. Reson. Med., vol. 63, no. 6, pp. 1610–1626, Jun. 2010, doi: 10.1002/mrm.22394.
[17] C. Preibisch and R. Deichmann, “Influence of RF spoiling on the stability and accuracy of T1 mapping based on spoiled FLASH with varying flip angles,” Magn Reson., vol. 61, no. 1, pp. 125–135, Jan. 2009.
[18] S. Baudrexel, U. Nöth, J.-R. Schüre, and R. Deichmann, “T1 mapping with the variable flip angle technique: A simple correction for insufficient spoiling of transverse magnetization,” Magn. Reson. Med., vol. 79, no. 6, pp. 3082–3092, 2018, doi: 10.1002/mrm.26979.
[19] “Fast quantitative MRI using controlled saturation magnetization transfer - A.G. Teixeira - 2019 - Magnetic Resonance in Medicine - Wiley Online Library.” [Online]. Available: https://onlinelibrary.wiley.com/doi/full/10.1002/mrm.27442. [Accessed: 23-Feb-2020].
[20] G. Helms, H. Dathe, N. Weiskopf, and P. Dechent, “Identification of signal bias in the variable flip angle method by linear display of the algebraic ernst equation,” Magn. Reson. Med. Off. J. Soc. Magn. Reson. Med. Soc. Magn. Reson. Med., Mar. 2011, doi: 10.1002/mrm.22849.
[21] R.-M. Gracien et al., “How stable is quantitative MRI? - Assessment of intra- and inter-scanner-model reproducibility using identical acquisition sequences and data analysis programs,” NeuroImage, vol. 207, p. 116364, Feb. 2020, doi: 10.1016/j.neuroimage.2019.116364.
[22] Y. Lee, M. F. Callaghan, J. Acosta-Cabronero, A. Lutti, and Z. Nagy, “Establishing intra- and inter-vendor reproducibility of T1 relaxation time measurements with 3T MRI,” Magn. Reson. Med., vol. 81, no. 1, pp. 454–465, 2019, doi: 10.1002/mrm.27421.
[23] K. J. Whitaker et al., “Adolescence is associated with genomically patterned consolidation of the hubs of the human brain connectome,” Proc. Natl. Acad. Sci. U. S. A., vol. 113, no. 32, pp. 9105–9110, 09 2016, doi: 10.1073/pnas.1601745113.
[24] M. F. Callaghan et al., “Widespread age-related differences in the human brain microstructure revealed by quantitative magnetic resonance imaging,” Neurobiol. Aging, vol. 35, no. 8, pp. 1862–1872, Aug. 2014, doi: 10.1016/j.neurobiolaging.2014.02.008.
[25] B. Draganski et al., “Regional specificity of MRI contrast parameter changes in normal ageing revealed by voxel-based quantification (VBQ),” NeuroImage, vol. 55, no. 4, pp. 1423–1434, Apr. 2011, doi: 10.1016/j.neuroimage.2011.01.052.
[26] F. Dick, A. Tierney, A. Lutti, O. Josephs, M. I. Sereno, and N. Weiskopf, “In vivo functional and myeloarchitectonic mapping of human primary auditory areas,” J. Neurosci., vol. 32, pp. 16095–105, 2012.
[27] M. I. Sereno, A. Lutti, N. Weiskopf, and F. Dick, “Mapping the human cortical surface by combining quantitative T1 with retinotopy,” Cereb. Cortex N. Y. N 1991, vol. 23, no. 9, pp. 2261–2268, Sep. 2013, doi: 10.1093/cercor/bhs213.
[28] R. Trampel, P.-L. Bazin, K. Pine, and N. Weiskopf, “In-vivo magnetic resonance imaging (MRI) of laminae in the human cortex,” NeuroImage, Sep. 2017, doi: 10.1016/j.neuroimage.2017.09.037.
[29] P. Freund et al., “MRI investigation of the sensorimotor cortex and the corticospinal tract after acute spinal cord injury: a prospective longitudinal study,” Lancet Neurol., vol. 12, no. 9, pp. 873–881, Sep. 2013, doi: 10.1016/S1474-4422(13)70146-7.
[30] S. C. L. Deoni, S. C. R. Williams, P. Jezzard, J. Suckling, D. G. M. Murphy, and D. K. Jones, “Standardized structural magnetic resonance imaging in multicentre studies using quantitative T1 and T2 imaging at 1.5 T,” NeuroImage, vol. 40, no. 2, pp. 662–671, Apr. 2008, doi: 10.1016/j.neuroimage.2007.11.052.