Advanced Diffusion Encoding Gradient Waveforms
Markus Nilsson1
1Lund University, Sweden

Synopsis

Most studies using diffusion MRI today rely on a pair of gradient pulses to do the diffusion encoding. However, this approach is fundamentally limited in several ways. This talk will provide examples of these limitations and show how to use advanced gradient waveforms to overcome them. Examples from recent papers will demonstrate how such advanced encodings can radically change the interpretation of diffusion MRI data.

Encoding and acquisition: Advanced Diffusion Encoding Gradient Waveforms

Diffusion MRI can provide information on the tissue microstructure using water molecules as probes (Alexander et al., 2017). Most dMRI studies have utilized the pulsed gradient spin echo (PGSE) method, which encodes for diffusion using a pair of gradient pulses. Although it was invented more than half a century ago (Stejskal and Tanner, 1965), it is still in widespread use. However, it is fundamentally limited in several ways. This talk will pinpoint these limitations and show how advanced gradient waveforms can overcome them.
Examples of limitations are:

  • Confusing microscopic anisotropy and orientation dispersion. With PGSE, effects of microscopic anisotropy are entangled with orientation dispersion (Mitra, 1995), which leads to degeneracy problems when using the standard model of white matter diffusion (Lampinen et al., 2019; Novikov et al., 2019). Gradient waveforms that enable so-called tensor-valued diffusion encoding provides orthogonal information can be used to solve the degeneracy problem and enable accurate estimation of the model parameters (Coelho et al., 2019; Reisert et al., 2019). However, problems remain when taking compartmental differences in T2-relaxation into account (Lampinen et al., 2019), which need to be addressed by acquiring data with multiple echo times (Lampinen, 2020).

  • Perfusion mapping - an example of multiexponential fitting as an ill-posed problem. The IVIM method relies on a high pseudo-diffusion of capillary blood to map the perfusion fraction (Le Bihan et al., 1986). However, estimates of the perfusion fraction are sensitive to noise due to the ill-posed nature of the multiexponential fitting procedure at the heart of the IVIM method. By varying the level of flow compensation, it is possible to obtain more accurate estimates of the perfusion fraction (Ahlgren et al., 2016; Wetscherek et al., 2014).

  • Diffusion time dependence - restricted diffusion and water exchange. Effects of water exchange act on the signal in opposite ways to effects of restricted diffusion with PGSE (Nilsson et al., 2013b). Thus, these effects are difficult to disentangle which leads to noisy parameter estimates. Methods based on double-diffusion encoding, such as filter exchange imaging, can overcome this problem by constructing a protocol with specific sensitivity to exchange (Lasič et al., 2011; Nilsson et al., 2013a). Methods using oscillating gradients can also improve the estimation of restricted diffusion (Aggarwal et al., 2011; Does et al., 2003; Drobnjak et al., 2016; Reynaud, 2017).

Acknowledgements

The Swedish Research Council (2016-03443)

References

Aggarwal, M., Jones, M.V., Calabresi, P.A., Mori, S., Zhang, J., 2011. Probing mouse brain microstructure using oscillating gradient diffusion MRI. Magn Reson Med. doi:10.1002/mrm.22981

Ahlgren, A., Knutsson, L., Wirestam, R., Nilsson, M., Ståhlberg, F., Topgaard, D.,Lasič, S., 2016. Quantification of microcirculatory parameters by joint analysis of flow-compensated and non-flow-compensated intravoxel incoherent motion (IVIM) data. NMR Biomed 29, 640–649. doi:10.1002/nbm.3505

Alexander, D.C., Dyrby, T.B., Nilsson, M., Zhang, H., 2017. Imaging brain microstructure with diffusion MRI: practicality and applications. NMR Biomed. doi:10.1002/nbm.3841

Coelho, S., Pozo, J.M., Jespersen, S.N., Jones, D.K., Frangi, A.F., 2019. Resolving degeneracy in diffusion MRI biophysical model parameter estimation using double diffusion encoding. Magn Reson Med 82, 395–410. doi:10.1002/mrm.27714

Does, M.D., Parsons, E.C., Gore, J.C., 2003. Oscillating gradient measurements of water diffusion in normal and globally ischemic rat brain. Magn Reson Med 49, 206–215. doi:10.1002/mrm.10385

Drobnjak, I., Zhang, H., Ianuş, A., Kaden, E., Alexander, D.C., 2016. PGSE, OGSE, and sensitivity to axon diameter in diffusion MRI: Insight from a simulation study. Magn Reson Med 75, 688–700. doi:10.1002/mrm.25631

Lampinen, B., 2020. Towards unconstrained compartment modeling in white matter using diffusion-relaxation MRI with tensor-valued diffusion encoding. ISMRM Proceedings.

Lampinen, B., Szczepankiewicz, F., Novén, M., van Westen, D., Hansson, O., Englund, E., Mårtensson, J., Westin, C.-F., Nilsson, M., 2019. Searching for the neurite density with diffusion MRI: Challenges for biophysical modeling. Hum Brain Mapp 27, 48–17. doi:10.1002/hbm.24542

Lasič, S., Nilsson, M., Lätt, J., Ståhlberg, F., Topgaard, D., 2011. Apparent exchange rate mapping with diffusion MRI. Magn Reson Med 66, 356–365. doi:10.1002/mrm.22782

Le Bihan, D., Breton, E., Lallemand, D., Grenier, P., Cabanis, E., Laval-Jeantet, M., 1986. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161, 401–407.

Mitra, P.P., 1995. Multiple wave-vector extensions of the NMR pulsed-field-gradient spin-echo diffusion measurement. Phys Rev B 51, 15074–15078.

Nilsson, M., Lätt, J., van Westen, D., Brockstedt, S., Lasič, S., Ståhlberg, F., Topgaard, D., 2013a. Noninvasive mapping of water diffusional exchange in the human brain using filter-exchange imaging. Magn Reson Med 69, 1573–1581. doi:10.1002/mrm.24395

Nilsson, M., van Westen, D., Ståhlberg, F., Sundgren, P.C., Lätt, J., 2013b. The role of tissue microstructure and water exchange in biophysical modelling of diffusion in white matter. Magn Reson Mater Phy 26, 345–370. doi:10.1007/s10334-013-0371-x

Novikov, D.S., Fieremans, E., Jespersen, S.N., Kiselev, V.G., 2019. Quantifying brain microstructure with diffusion MRI: Theory and parameter estimation. NMR Biomed 32, e3998. doi:10.1002/nbm.3998

Reisert, M., Kiselev, V.G., Dhital, B., 2019. A unique analytical solution of the white matter standard model using linear and planar encodings. Magn Reson Med 81, 3819–3825. doi:10.1002/mrm.27685

Reynaud, O., 2017. Time-Dependent Diffusion MRI in Cancer: Tissue Modeling and Applications. Frontiers in Physics 5, 581–16. doi:10.3389/fphy.2017.00058 Stejskal, E.O., Tanner, J.E., 1965. Spin diffusion measurements: Spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42, 288–292.

Wetscherek, A., Stieltjes, B., Laun, F.B., 2014. Flow-compensated intravoxel incoherent motion diffusion imaging. Magn Reson Med 74, 410–419. doi:10.1002/mrm.25410

Proc. Intl. Soc. Mag. Reson. Med. 28 (2020)