The cardiac microarchitecture is a key determinant of the relevant functions of the heart, including electrophysiological properties and mechanical activity, affecting both systemic blood flow and coronary perfusion. Thus, it also fundamentally determines metabolism of the heart muscle as a constant supply of substrates is crucial for the heart’s ability to continuously pump blood through the body. The aim of this presentation is to discuss two techniques beyond routinely applied assessments of cardiac function, namely the use of Diffusion Magnetic Resonance Imaging to investigate the microstructure of the heart and MR Spectroscopy to interrogate metabolic processes in the myocardium.
1. Kanai, A. and G. Salama, Optical mapping reveals that repolarization spreads anisotropically and is guided by fiber orientation in guinea pig hearts. Circ Res, 1995. 77(4): p. 784-802.
2. Vetter, F.J., et al., Epicardial fiber organization in swine right ventricle and its impact on propagation.Circ Res, 2005. 96(2): p. 244-51.
3. Chen, P.S., et al., Effects of myocardial fiber orientation on the electrical induction of ventricular fibrillation. Am J Physiol, 1993. 264(6 Pt 2): p. H1760-73.
4. de Bakker, J.M., M. Stein, and H.V. van Rijen, Three-dimensional anatomic structure as substrate for ventricular tachycardia/ventricular fibrillation. Heart Rhythm, 2005. 2(7): p. 777-9.
5. Eason, J., et al., Influence of anisotropy on local and global measures of potential gradient in computer models of defibrillation. Ann Biomed Eng, 1998. 26(5): p. 840-9.
6. Hooks, D.A., et al., Cardiac microstructure: implications for electrical propagation and defibrillation in the heart. Circ Res, 2002. 91(4): p. 331-8.
7. Waldman, L.K., et al., Relation between transmural deformation and local myofiber direction in canine left ventricle. Circ Res, 1988. 63(3): p. 550-62.
8. Ashikaga, H., et al., Changes in regional myocardial volume during the cardiac cycle: implications for transmural blood flow and cardiac structure. Am J Physiol Heart Circ Physiol, 2008. 295(2): p. H610-8.
9. Delhaas, T., et al., Subepicardial fiber strain and stress as related to left ventricular pressure and volume. Am J Physiol, 1993. 264(5 Pt 2): p. H1548-59.
10. Mazhari, R., et al., Structural basis of regional dysfunction in acutely ischemic myocardium.Cardiovasc Res, 2000. 47(2): p. 284-93.
11. Wu, M.T., et al., Diffusion tensor magnetic resonance imaging mapping the fiber architecture remodeling in human myocardium after infarction: correlation with viability and wall motion.Circulation, 2006. 114(10): p. 1036-45.
12. Walker, J.C., et al., Helical myofiber orientation after myocardial infarction and left ventricular surgical restoration in sheep. J Thorac Cardiovasc Surg, 2005. 129(2): p. 382-90.
13. Jiang, Y., et al., Three-dimensional diffusion tensor microscopy of fixed mouse hearts. Magn Reson Med, 2004. 52(3): p. 453-60.
14. Strijkers, G.J., et al., Diffusion tensor imaging of left ventricular remodeling in response to myocardial infarction in the mouse. NMR in Biomedicine, 2008. 22: p. 182-190.
15. Nielles-Vallespin, S., et al., Assessment of Myocardial Microstructural Dynamics by In Vivo Diffusion Tensor Cardiac Magnetic Resonance. J Am Coll Cardiol, 2017. 69(6): p. 661-676.
16. Reese, T.G., et al., Imaging myocardial fiber architecture in vivo with magnetic resonance. Magn Reson Med, 1995. 34(6): p. 786-91.
17. Hales, P.W., et al., Histo-anatomical structure of the living isolated rat heart in two contraction states assessed by diffusion tensor MRI. Prog Biophys Mol Biol, 2012. 110(2-3): p. 319-30.
18. Lohezic, M., et al., Interrogation of living myocardium in multiple static deformation states with diffusion tensor and diffusion spectrum imaging. Progress in Biophysics and Molecular Biology, 2014. 115: p. 213-225.
19. Teh, I., et al., Mapping Cardiac Microstructure of Rabbit Heart in Different Mechanical States by High Resolution Diffusion Tensor Imaging: A Proof-of-Principle Study. Progress in Biophysics and Molecular Biology, 2016. 121: p. 85-96.
20. Teh, I., et al., Resolving Fine Cardiac Structures in Rats with High Resolution Diffusion Tensor Imaging. Scientific Reports, 2016. 6: p. 1-14.
21. Li, W., et al., Ex vivo diffusion tensor MRI reflects microscopic structural remodeling associated with aging and disease progression in normal and cardiomyopathic Syrian hamsters. NMR In Biomedicine, 2009. 22: p. 819-825.
22. Strijkers, G.J., et al., Diffusion Tensor Imaging of Left Ventricular Remodeling in Response to Myocardial Infarction in the Mouse. NMR In Biomedicine, 2009. 22: p. 182-190.
23. Welsh, C.L., E.V. DiBella, and E.W. Hsu, Higher-Order Motion-Compensation for In Vivo Cardiac Diffusion Tensor Imaging in Rats. IEEE Trans Med Imaging, 2015. 34(9): p. 1843-53.
24. Sosnovik, D.E., et al., Microstructural impact of ischemia and bone marrow-derived cell therapy revealed with diffusion tensor magnetic resonance imaging tractography of the heart in vivo.Circulation, 2014. 129(17): p. 1731-41.
25. Bottomley, P.A. and R.G. Weiss, Noninvasive localized MR quantification of creatine kinase metabolites in normal and infarcted canine myocardium. Radiology, 2001. 219(2): p. 411-8.
26. Bache, R.J., et al., Myocardial oxygenation at high workstates in hearts with left ventricular hypertrophy. Cardiovasc Res, 1999. 42(3): p. 616-26.
27. Schneider, J.E., et al., In vivo cardiac 1H-MRS in the mouse. Magn Reson Med, 2004. 52(5): p. 1029-35.
28. Bakermans, A.J., et al., Carnitine supplementation attenuates myocardial lipid accumulation in long-chain acyl-CoA dehydrogenase knockout mice. J Inherit Metab Dis, 2013.
29. Bakermans, A.J., et al., Fasting-induced myocardial lipid accumulation in long-chain acyl-CoA dehydrogenase knockout mice is accompanied by impaired left ventricular function. Circulation. Cardiovascular imaging, 2011. 4(5): p. 558-65.
30. Omerovic, E., et al., In vivo metabolic imaging of cardiac bioenergetics in transgenic mice. Biochem Biophys Res Commun, 2000. 271(1): p. 222-8.
31. Bakermans, A.J., et al., In vivo mouse myocardial (31)P MRS using three-dimensional image-selected in vivo spectroscopy (3D ISIS): technical considerations and biochemical validations. NMR Biomed, 2015. 28(10): p. 1218-27.
32. Chacko, V.P., et al., MRI/MRS assessment of in vivo murine cardiac metabolism, morphology, and function at physiological heart rates. Am.J.Physiol.Heart Circ.Physiol., 2000. 279: p. H2218-H2224.
33. Naumova, A.V., R.G. Weiss, and V.P. Chacko, Regulation of murine myocardial energy metabolism during adrenergic stress studied by in vivo 31P NMR spectroscopy. Am J Physiol Heart Circ Physiol, 2003. 285(5): p. H1976-9.
34. Weiss, R.G., et al., An increase in the myocardial PCr/ATP ratio in GLUT4 null mice. Faseb J, 2002. 16(6): p. 613-5.
35. Flogel, U., et al., In vivo 2D mapping of impaired murine cardiac energetics in NO-induced heart failure. Magn Reson Med, 2007. 57(1): p. 50-8.
36. Horn, M., et al., Detection of myocardial viability based on measurement of sodium content: A (23)Na-NMR study. Magn Reson Med, 2001. 45: p. 756-64.
37. Weidensteiner, C., et al., Imaging of intracellular sodium with shift reagent aided (23)Na CSI in isolated rat hearts. Magn Reson Med, 2002. 48(1): p. 89-96.
38. Maguire, M.L., et al., Compressed sensing to accelerate magnetic resonance spectroscopic imaging: evaluation and application to 23Na-imaging of mouse hearts. J Cardiovasc Magn Reson, 2015. 17: p. 45.
39. Kim, R.J., et al., Fast 23Na magnetic resonance imaging of acute reperfused myocardial infarction. Potential to assess myocardial viability. Circulation, 1997. 95(7): p. 1877-85.
40. Kim, R.J., et al., Relationship of elevated 23Na magnetic resonance image intensity to infarct size after acute reperfused myocardial infarction. Circulation, 1999. 100: p. 185-92.
41. Constantinides, C.D., et al., Noninvasive quantification of total sodium concentrations in acute reperfused myocardial infarction using 23Na MRI. Magn Reson Med, 2001. 46(6): p. 1144-51.
42. Ardenkjaer-Larsen, J.H., et al., Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR.Proc Natl Acad Sci U S A, 2003. 100(18): p. 10158-63.
43. Golman, K., et al., Molecular imaging with endogenous substances. Proc Natl Acad Sci U S A, 2003. 100(18): p. 10435-9.
44. Dodd, M.S., et al., In vivo mouse cardiac hyperpolarized magnetic resonance spectroscopy. J Cardiovasc Magn Reson, 2013. 15: p. 19.
45. Miller, J.J., et al., Robust and high resolution hyperpolarized metabolic imaging of the rat heart at 7 T with 3D spectral-spatial EPI. Magn Reson Med, 2016. 75(4): p. 1515-24.
46. Schroeder, M.A., et al., In vivo assessment of pyruvate dehydrogenase flux in the heart using hyperpolarized carbon-13 magnetic resonance. Proc Natl Acad Sci U S A, 2008. 105(33): p. 12051-6.
47. Lau, A.Z., et al., Rapid multislice imaging of hyperpolarized 13C pyruvate and bicarbonate in the heart. Magn Reson Med, 2010. 64(5): p. 1323-31.
48. Cunningham, C.H., et al., Hyperpolarized 13C Metabolic MRI of the Human Heart: Initial Experience.Circ Res, 2016. 119(11): p. 1177-1182.
49. Dominguez-Viqueira, W., et al., Intensity correction for multichannel hyperpolarized 13C imaging of the heart. Magn Reson Med, 2016. 75(2): p. 859-65.
50. Lau, A.Z., et al., Reproducibility study for free-breathing measurements of pyruvate metabolism using hyperpolarized (13) C in the heart. Magn Reson Med, 2013. 69(4): p. 1063-71.
51. Schroeder, M.A., et al., Hyperpolarized (13)C magnetic resonance reveals early- and late-onset changes to in vivo pyruvate metabolism in the failing heart. Eur J Heart Fail, 2013. 15(2): p. 130-40.