Magnetic resonance imaging of myocardial perfusion continues to challenge current limits for fast dynamic imaging to provide sufficient spatial and temporal resolution for accurate detection perfusion defects, and enable almost complete coverage of the left ventricle. The technical capabilities of MR cardiac perfusion imaging impact the clinical use of this technique for the detection of ischemic heart disease, and its relative importance compared to other imaging modalities and tests. Recent studies have shown that cardiac magnetic resonance perfusion imaging provides strong prognostic value for predicting adverse events.
1. Manning, W., W. Li, and R. Edelman, A prellminary report comparing MR coronary angiography with conventional angiography. N Engl J Med, 1993. 328: p. 828—832.
2. Wilke, N., et al., Contrast-enhanced first-pass myocardial perfusion imaging in humans and dogs, in 77th Scientific Assembly and Annual Meeting. 1991, RSNA: Chicago. p. 56C.
3. Schaefer, S., R.v. Tyen, and O. Saloner, Evaluation of myocardial perfusion abnormalities with gadolinium-enhanced snapshot MR imaging in humans. Radiology, 1992. 185: p. 795-801.
4. Zun, Z., et al., Arterial Spin Labeled CMR Detects Clinically Relevant Increase in Myocardial Blood Flow With Vasodilation. JACC Cardiovasc Imaging, 2011. 4(12): p. 1253-61.
5. Levelt, E., et al., Correction to: Adenosine stress CMR T1-mapping detects early microvascular dysfunction in patients with type 2 diabetes mellitus without obstructive coronary artery disease. J Cardiovasc Magn Reson, 2017. 19(1): p. 99.
6. Levelt, E., et al., Adenosine stress CMR T1-mapping detects early microvascular dysfunction in patients with type 2 diabetes mellitus without obstructive coronary artery disease. J Cardiovasc Magn Reson, 2017. 19(1): p. 81.
7. Tsekos, N.V., et al., Magnetization transfer contrast in assesment of myocardial perfusion. Radiology, 1993. 189(P): p. 166.
8. Coelho-Filho, O.R., et al., Stress Myocardial Perfusion Imaging by CMR Provides Strong Prognostic Value to Cardiac Events Regardless of Patient's Sex. JACC Cardiovasc Imaging, 2011. 4(8): p. 850-61.
9. Fair, M.J., et al., A review of 3D first-pass, whole-heart, myocardial perfusion cardiovascular magnetic resonance. J Cardiovasc Magn Reson, 2015. 17: p. 68.
10. Motwani, M., et al., High-resolution versus standard-resolution cardiovascular MR myocardial perfusion imaging for the detection of coronary artery disease. Circ Cardiovasc Imaging, 2012. 5(3): p. 306-13.
11. Di Bella, E.V., D.L. Parker, and A.J. Sinusas, On the dark rim artifact in dynamic contrast-enhanced MRI myocardial perfusion studies. Magn Reson Med, 2005. 54(5): p. 1295-9.
12. Meloni, A., et al., Myocardial first-pass perfusion: influence of spatial resolution and heart rate on the dark rim artifact. Magn Reson Med, 2011. 66(6): p. 1731-8.
13. Fair, M.J., et al., Improved dynamic parallel imaging coil calibration method robust to respiratory motion with application to first-pass contrast-enhanced myocardial perfusion imaging. Magn Reson Med, 2016. 75(6): p. 2315-23.
14. Weber, S., et al., Quantitative myocardial perfusion imaging using different autocalibrated parallel acquisition techniques. J Magn Reson Imaging, 2008. 28(1): p. 51-9.
15. Plein, S., et al., Dynamic contrast-enhanced myocardial perfusion MRI accelerated with k-t sense. Magn Reson Med, 2007. 58(4): p. 777-85.
16. Vitanis, V., et al., Accelerated cardiac perfusion imaging using k-t SENSE with SENSE training. Magn Reson Med, 2009. 62(4): p. 955-65.
17. Vitanis, V., et al., High resolution 3D cardiac perfusion imaging using compartment-based k-t PCA. Conf Proc IEEE Eng Med Biol Soc, 2010. 2010: p. 21-4.
18. Naresh, N.K., et al., Accelerated, first-pass cardiac perfusion pulse sequence with radial k-space sampling, compressed sensing, and k-space weighted image contrast reconstruction tailored for visual analysis and quantification of myocardial blood flow. Magn Reson Med, 2019. 81(4): p. 2632-2643.
19. Otazo, R., et al., Combination of compressed sensing and parallel imaging for highly accelerated first-pass cardiac perfusion MRI. Magn Reson Med, 2010. 64(3): p. 767-76.
20. Wech, T., et al., A compressed sensing accelerated radial MS-CAIPIRINHA technique for extended anatomical coverage in myocardial perfusion studies on PET/MR systems. Phys Med, 2019. 64: p. 157-165.
21. Salerno, M., et al., Optimization of spiral-based pulse sequences for first-pass myocardial perfusion imaging. Magn Reson Med, 2011. 65(6): p. 1602-10.
22. Salerno, M., et al., Adenosine stress cardiovascular magnetic resonance with variable-density spiral pulse sequences accurately detects coronary artery disease: initial clinical evaluation. Circ Cardiovasc Imaging, 2014. 7(4): p. 639-46.
23. Sharif, B., et al., Towards elimination of the dark-rim artifact in first-pass myocardial perfusion MRI: removing Gibbs ringing effects using optimized radial imaging. Magn Reson Med, 2014. 72(1): p. 124-36.
24. Block, K.T., M. Uecker, and J. Frahm, Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint. Magn Reson Med, 2007. 57(6): p. 1086-98.
25. Wollny, G., et al., Automatic motion compensation of free breathing acquired myocardial perfusion data by using independent component analysis. Med Image Anal, 2012. 16(5): p. 1015-28.
26. Wollny, G., et al., A new similarity measure for non-rigid breathing motion compensation of myocardial perfusion MRI. Conf Proc IEEE Eng Med Biol Soc, 2008. 2008: p. 3389-92.
27. Wollny, G., et al., Exploiting quasiperiodicity in motion correction of free-breathing myocardial perfusion MRI. IEEE Trans Med Imaging, 2010. 29(8): p. 1516-27.
28. Milles, J., et al., Fully automated motion correction in first-pass myocardial perfusion MR image sequences. IEEE Trans Med Imaging, 2008. 27(11): p. 1611-21.
29. Haro Alonso, D., et al., Prediction of cardiac death after adenosine myocardial perfusion SPECT based on machine learning. J Nucl Cardiol, 2019. 26(5): p. 1746-1754.
30. Arsanjani, R., et al., Improved accuracy of myocardial perfusion SPECT for detection of coronary artery disease by machine learning in a large population. J Nucl Cardiol, 2013. 20(4): p. 553-62.
31. Kwong, R.Y., et al., Cardiac Magnetic Resonance Stress Perfusion Imaging for Evaluation of Patients With Chest Pain. J Am Coll Cardiol, 2019. 74(14): p. 1741-1755.
32. Knaapen, P., et al., Regional heterogeneity of resting perfusion in hypertrophic cardiomyopathy is related to delayed contrast enhancement but not to systolic function: a PET and MRI study. J Nucl Cardiol, 2006. 13(5): p. 660-7.
33. Jerosch-Herold, M., et al., Cardiac magnetic resonance imaging of myocardial contrast uptake and blood flow in patients affected with idiopathic or familial dilated cardiomyopathy. American Journal of Physiology-Heart and Circulatory Physiology, 2008. 295(3): p. H1234-H1242.
34. Petersen, S., et al., Evidence for microvascular dysfunction in hypertrophic cardiomyopathy: New insights from multiparametric MRI. Heart, 2007. 93: p. A4-A4.