This lecture targets scientists and clinicians interested in learning what are the most recent developments in numerical simulations, with a particular focus on their use for the validation of commonly used diffusion MRI (dMRI) models of tissue microstructure. We will provide an overview of the aspects of dMRI techniques that can be validated with numerical phantoms, and of the range of numerical phantoms that are currently available. Examples of how to use numerical phantoms for validating dMRI techniques will be provided and future perspectives on the next-generation numerical phantoms will be discussed.
1. Alexander DC, Dyrby TB, Nilsson M, & Zhang H (2019) Imaging brain microstructure with diffusion MRI: practicality and applications. Nmr Biomed 32(4):e3841.
2. Stanisz GJ, Szafer A, Wright GA, & Henkelman RM (1997) An analytical model of restricted diffusion in bovine optic nerve. Magn Reson Med 37(1):103-111.
3. Assaf Y & Basser PJ (2005) Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain. Neuroimage 27(1):48-58.
4. Jespersen SN, Kroenke CD, Ostergaard L, Ackerman JJ, & Yablonskiy DA (2007) Modeling dendrite density from magnetic resonance diffusion measurements. Neuroimage 34(4):1473-1486.
5. Alexander DC, et al. (2010) Orientationally invariant indices of axon diameter and density from diffusion MRI. Neuroimage 52(4):1374-1389.
6. Fieremans E, Jensen JH, & Helpern JA (2011) White matter characterization with diffusional kurtosis imaging. Neuroimage 58(1):177-188.
7. Zhang H, Schneider T, Wheeler-Kingshott CA, & Alexander DC (2012) NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 61(4):1000-1016.
8. Scherrer B, et al. (2016) Characterizing brain tissue by assessment of the distribution of anisotropic microstructural environments in diffusion-compartment imaging (DIAMOND). Magn Reson Med76(3):963-977.
9. Palombo M, et al. (2019) SANDI: a compartment-based model for non-invasive apparent soma and neurite imaging by diffusion MRI. arXiv preprint.
10. Novikov DS, Kiselev VG, & Jespersen SN (2018) On modeling. Magn Reson Med 79(6):3172-3193.
11. Novikov DS, Fieremans E, Jespersen SN, & Kiselev VG (2019) Quantifying brain microstructure with diffusion MRI: Theory and parameter estimation. Nmr Biomed 32(4):e3998.
12. Fieremans E & Lee HH (2018) Physical and numerical phantoms for the validation of brain microstructural MRI: A cookbook. Neuroimage 182:39-61.
13. Szafer A, Zhong J, & Gore JC (1995) Theoretical model for water diffusion in tissues. Magn Reson Med 33(5):697-712.
14. Ford JC & Hackney DB (1997) Numerical model for calculation of apparent diffusion coefficients (ADC) in permeable cylinders--comparison with measured ADC in spinal cord white matter. Magn Reson Med37(3):387-394.
15. Peled S (2007) New perspectives on the sources of white matter DTI signal. IEEE Trans Med Imaging26(11):1448-1455.
16. Balls GT & Frank LR (2009) A simulation environment for diffusion weighted MR experiments in complex media. Magn Reson Med 62(3):771-778.
17. Cook PA, et al. (2006) Camino: open-source diffusion-MRI reconstruction and processing. In 14th scientific meeting of the international society for magnetic resonance in medicine (Vol. 2759, p. 2759). Seattle WA, USA.
18. Hall MG & Alexander DC (2009) Convergence and parameter choice for Monte-Carlo simulations of diffusion MRI. IEEE Trans Med Imaging 28(9):1354-1364.
19. Nilsson M, et al. (2009) On the effects of a varied diffusion time in vivo: is the diffusion in white matter restricted? Magn Reson Imaging 27(2):176-187.
20. Nilsson M, et al. (2010) Evaluating the accuracy and precision of a two-compartment Karger model using Monte Carlo simulations. J Magn Reson 206(1):59-67.
21. Nilsson M, Latt J, Stahlberg F, van Westen D, & Hagslatt H (2012) The importance of axonal undulation in diffusion MR measurements: a Monte Carlo simulation study. Nmr Biomed 25(5):795-805.
22. Brabec J, Lasic S, & Nilsson M (2020) Time-dependent diffusion in undulating thin fibers: Impact on axon diameter estimation. Nmr Biomed 33(3):e4187.
23. Fieremans E, Novikov DS, Jensen JH, & Helpern JA (2010) Monte Carlo study of a two-compartment exchange model of diffusion. Nmr Biomed 23(7):711-724.
24. Lee HH, et al. (2019) Along-axon diameter variation and axonal orientation dispersion revealed with 3D electron microscopy: implications for quantifying brain white matter microstructure with histology and diffusion MRI. Brain Struct Funct 224(4):1469-1488.
25. Landman BA, et al. (2010) Complex geometric models of diffusion and relaxation in healthy and damaged white matter. Nmr Biomed 23(2):152-162.
26. Yeh CH, et al. (2013) Diffusion microscopist simulator: a general Monte Carlo simulation system for diffusion magnetic resonance imaging. PLoS One 8(10):e76626.
27. Li JR, Calhoun D, Poupon C, & Le Bihan D (2014) Numerical simulation of diffusion MRI signals using an adaptive time-stepping method. Phys Med Biol 59(2):441-454.
28. Ginsburger K, et al. (2018) Improving the Realism of White Matter Numerical Phantoms: A Step toward a Better Understanding of the Influence of Structural Disorders in Diffusion MRI. Front Phys 6.
29. Ginsburger K, et al. (2019) MEDUSA: A GPU-based tool to create realistic phantoms of the brain microstructure using tiny spheres. Neuroimage 193:10-24.
30. Palombo M, Gabrielli A, Servedio VD, Ruocco G, & Capuani S (2013) Structural disorder and anomalous diffusion in random packing of spheres. Sci Rep 3:2631.
31. Palombo M, Gentili S, Bozzali M, Macaluso E, & Capuani S (2015) New insight into the contrast in diffusional kurtosis images: does it depend on magnetic susceptibility? Magn Reson Med 73(5):2015-2024.
32. Palombo M, et al. (2016) New paradigm to assess brain cell morphology by diffusion-weighted MR spectroscopy in vivo. Proc Natl Acad Sci U S A 113(24):6671-6676.
33. Ramirez-Manzanares A, Cook PA, Hall M, Ashtari M, & Gee JC (2011) Resolving axon fiber crossings at clinical b-values: an evaluation study. Med Phys 38(9):5239-5253.
34. Brusini L, Menegaz G, & Nilsson M (2019) Monte Carlo Simulations of Water Exchange Through Myelin Wraps: Implications for Diffusion MRI. IEEE Trans Med Imaging 38(6):1438-1445.
35. Budde MD & Frank JA (2010) Neurite beading is sufficient to decrease the apparent diffusion coefficient after ischemic stroke. Proc Natl Acad Sci U S A 107(32):14472-14477.
36. Palombo M, Ligneul C, Hernandez-Garzon E, & Valette J (2017) Can we detect the effect of spines and leaflets on the diffusion of brain intracellular metabolites? Neuroimage 182:283-293.
37. Vincent M, Palombo M, & Valette J (2020) Revisiting double diffusion encoding MRS in the mouse brain at 11.7T: Which microstructural features are we sensitive to? Neuroimage 207:116399.
38. Burcaw LM, Fieremans E, & Novikov DS (2015) Mesoscopic structure of neuronal tracts from time-dependent diffusion. Neuroimage 114:18-37.
39. Lam WW, Jbabdi S, & Miller KL (2015) A model for extra-axonal diffusion spectra with frequency-dependent restriction. Magn Reson Med 73(6):2306-2320.
40. Stikov N, et al. (2011) Bound pool fractions complement diffusion measures to describe white matter micro and macrostructure. Neuroimage 54(2):1112-1121.
41. Chin CL, Wehrli FW, Hwang SN, Takahashi M, & Hackney DB (2002) Biexponential diffusion attenuation in the rat spinal cord: computer simulations based on anatomic images of axonal architecture. Magn Reson Med 47(3):455-460.
42. Hwang SN, Chin CL, Wehrli FW, & Hackney DB (2003) An image-based finite difference model for simulating restricted diffusion. Magn Reson Med 50(2):373-382.
43. Russell G, Harkins KD, Secomb TW, Galons JP, & Trouard TP (2012) A finite difference method with periodic boundary conditions for simulations of diffusion-weighted magnetic resonance experiments in tissue. Phys Med Biol 57(4):N35-46.
44. Hagslatt H, Jonsson B, Nyden M, & Soderman O (2003) Predictions of pulsed field gradient NMR echo-decays for molecules diffusing in various restrictive geometries. Simulations of diffusion propagators based on a finite element method. J Magn Reson 161(2):138-147.
45. Moroney BF, Stait-Gardner T, Ghadirian B, Yadav NN, & Price WS (2013) Numerical analysis of NMR diffusion measurements in the short gradient pulse limit. J Magn Reson 234:165-175.
46. Nguyen DV, Li JR, Grebenkov DS, & Le Bihan D (2014) A finite element method to solve the Bloch-Torrey equation applied to diffusion magnetic resonance imaging. J. Comp. Phys. 263:283-302
47. Li JR, et al. (2019) SpinDoctor: A MATLAB toolbox for diffusion MRI simulation. Neuroimage202:116120.
48. Beltrachini L, Taylor ZA, & Frangi AF (2015) A parametric finite element solution of the generalised Bloch-Torrey equation for arbitrary domains. J Magn Reson 259:126-134.
49. Palombo M, Alexander DC, & Zhang H (2019) A generative model of realistic brain cells with application to numerical simulation of the diffusion-weighted MR signal. Neuroimage 188:391-402.
50. Callaghan R, Alexander DC, Zhang H, & Palombo M (2019) Contextual Fibre Growth to Generate Realistic Axonal Packing for Diffusion MRI Simulation. Information Processing in Medical Imaging, Ipmi 2019 11492:429-440.
51. Reuter JA, et al. (2019) FAConstructor: an interactive tool for geometric modeling of nerve fiber architectures in the brain. Int J Comput Assist Radiol Surg 14(11):1881-1889.