Brainstem Anatomy & Hodology: In Vivo imaging
Marta Bianciardi1
1Athinoula A. Martinos Center for Biomedical Imaging, MGH & Harvard Medical School, Boston, MA, United States

Synopsis

In this course, we first describe the morphology of major brainstem nuclei involved in wakefulness/sleep, motor, sensory, autonomic and limbic function, as evinced from MRI of living humans. We then present recently developed in-vivo atlases for brainstem nuclei localization in conventional images of living humans. Further, we provide an overview of the opportunities and challenges of in-vivo mapping the connectivity pathways of these tiny nuclei using functional and diffusion-based MRI. Finally, we present validation strategies of in-vivo brainstem nuclei atlases and connectomes, and their preliminary application to brainstem-related pathologies, such as disorders of consciousness, sleep disorders and neurodegenerative diseases.

Target Audience

MRI scientists, neuroscientists, clinical researchers, neurologists and neurosurgeons interested in mapping brainstem nuclei location and their connectivity pathways with structural, functional and diffusion-based MRI in living humans.

Objectives

Attendees will learn about:
• How to identify major brainstem nuclei involved in wakefulness/sleep, motor, sensory, autonomic and limbic function in MRI of living humans;
• The opportunities and challenges of mapping the connectivity pathways of these tiny nuclei using functional and diffusion-based MRI in living humans;
• Validation strategies of in vivo brainstem nuclei atlases and connectomes, and their preliminary application to brainstem-related pathologies.

Background

Despite the development of detailed in vivo atlases of the human cortex [1-3], less than 10% of subcortical gray matter nuclei have been annotated in neuroimages of living humans due to limited imaging contrast and/or spatial resolution [4]. This holds true for brainstem nuclei, tiny regions crucially involved in a broad set of vital functions (e.g. arousal/sleep, autonomic, memory, affect, pain, motor, sensory, vestibular [5-11]) and diseases (e.g. sleep disorders, disorders of consciousness, autonomic dysfunction, pain, alpha-synucleinopathies) [12-19]. To identify the location of brainstem nuclei in living humans, neuroscientists and neurosurgeons currently rely on the arduous work of neuroanatomists and pathologists, which created meticulous postmortem atlases of the human brainstem [7, 20-23]. Yet, it is difficult to precisely extrapolate the location of brainstem nuclei from ex vivo atlases to conventional (e.g. 3 Tesla) in vivo images. This is because postmortem atlases are mostly 2D, non-probabilistic, and non-deformable representations of brainstem nuclei with inherent distortion due to tissue processing; further, these nuclei are not visible in conventional in vivo MRI and display inter-subject variability. This limits our understanding/diagnosis/prognostication of diseases related to the impairment of brainstem nuclei function (e.g. sleep disorders, disorders of consciousness, autonomic dysfunction, chronic pain, and alpha-synucleinopathies), as well as neurosurgical intervention in the brainstem (e.g. deep brain stimulation, surgical resection).

Purpose

The purpose of this course is to present recently developed MRI methods and tools able to precisely localize brainstem nuclei in neuroimages of living humans and to estimate their structural and functional connectivity with the rest of the brain.

Outline

This course will cover:
- A review of major brainstem nuclei structure and function, as evinced from MRI of living humans [24-36];
- Recently developed in vivo atlases for brainstem nuclei localization in conventional images of living humans [24-36];
- A description of structural and functional connectomes of brainstem nuclei obtained from in vivo human MRI [37-44];
- Validation of in vivo brainstem nuclei atlases and connectomes using postmortem multi-modal techniques and meta-analysis of animal studies [32,45];
- Preliminary application of in vivo brainstem nuclei atlases and connectomes to evaluate human brain injury and disease [46-50].

Acknowledgements

National Institutes of Health: NIBIB K01 EB019474 and P41 EB015896; NIDCD R21 DC015888; NCI U01 CA193632. Massachusetts General Hospital Claflin Distinguished Scholar Award. Harvard Mind Brain Behavior Faculty Award.

References

1. Destrieux, C., Fischl, B., Dale, A., Halgren, E., 2010. Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage 53, 1-15.

2. Desikan, R.S., Segonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D., Buckner, R.L., Dale, A.M., Maguire, R.P., Hyman, B.T., Albert, M.S., Killiany, R.J., 2006. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31, 968-980.

3. Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., Joliot, M., 2002. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15, 273-289.

4. Forstmann, B.U., de Hollander, G., van Maanen, L., Alkemade, A., Keuken, M.C., 2017. Towards a mechanistic understanding of the human subcortex. Nat Rev Neuro 18, 57-65.

5. Saper, C.B., Fuller, P.M., Pedersen, N.P., Lu, J., Scammell, T.E., 2010. Sleep state switching. Neuron 68, 1023–1042.

6. Parvizi, J., Damasio, A., 2001. Consciousness and the brainstem, Consciousness and the brainstem. Cognition 79, 135-160.

7. Olszewski, J., Baxter, D., Karger, S. (Ed.), Cytoarchitecture of the Human Brainstem, JB Lippincott Company, Philadelphia and Montreal North America, 1954.

8. Vaillancourt, D.E., Spraker, M.B., Prodoehl, J., Abraham, I., Corcos, D.M., Zhou, X.J., Comella, C.L., Little, D.M., 2009. High-resolution diffusion tensor imaging in the substantia nigra of de novo Parkinson disease. Neurology 72, 1378-1384.

9. Takakusaki, K., 2017. Functional neuroanatomy for posture and gait control. J Mov Disord 10, 1-17.

10. Satpute, A.B., Kragel, P.A., Barrett, L.F., Wager, T.D., Bianciardi M., 2018. Deconstructing arousal into wakeful, autonomic and affective varieties. Neurosci Lett pii: S0304-3940(18)30048-X.

11. Mello-Carpes, P.B., Izquierdo, I., 2013. The Nucleus of the Solitary Tract --> Nucleus Paragigantocellularis --> Locus Coeruleus --> CA1 region of dorsal hippocampus pathway is important for consolidation of object recognition memory. Neurobiol Learn Mem 100, 56-63.

12. de Lau, L.M., Breteler, M.M., 2006. Epidemiology of Parkinson's disease. Lancet Neurol 5, 525-535.

13. Braak, H., Del Tredici, K., Rub, U., de Vos, R.A.I., Steur, E.N.H., Braak, E., 2003. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24, 197-211.

14. Del Tredici, K., Braak. H., 2012. Lewy pathology and neurodegeneration in premotor Parkinson’s disease. Mov Disord 27, 597-607.

15. Del Tredici, K., Braak. H., 2016. Sporadic Parkinson’s disease: development and distribution of a-synuclein pathology. Neuropathol Appl Neurobiol 42, 33-50.

16. Postuma, R.B., 2014. Prodromal Parkinson’s disease – using REM sleep behavior disorder as a window. Parkinsonism Relat Disord Suppl 1, S1-4.

17. Boeve BF, Silber MH, Saper CB, et al., 2007. Pathophysiology of REM sleep behavior disorder and relevance to neurodegenerative disease. Brain 130, 2770-2788.

18. Brown, E.N., Lydic, R., Schiff, N.D., 2010. General anesthesia, sleep, and coma. N Engl J Med 363, 2638-2650.

19. Edlow, B.L., Haynes, R.L., Takahashi, E., Klein, J.P., Cummings, P., Benner, T., Greer, D.M., Greenberg, S.M., Wu, O., Kinney, H.C., Folkerth, R.D., 2013. Disconnection of the ascending arousal system in traumatic coma. J Neuropathol Exp Neurol 72, 505-523.

20. Paxinos, G., Huang, X.F., 1995. Atlas of the human brainstem. Academic Press, San Diego.

21. Paxinos, G., Xu-Feng, H., Sengul, G., Watson, C., 2012. Organization of brainstem nuclei. In: The Human Nervous System. Elsevier, pp. 260–327.

22. Schaltenbrand, G., Wahren, W., Hassler, R., 1977. Atlas for stereotaxy of the human brain. Stuttgart: Thieme.

23. Naidich, T.P., Duvernoy, H.M., Delman, B.N., Sorensen, A.G., Kollias, S.S., Haacke, E.M., 2009. Duvernoy’s atlas of the human brainstem and cerebellum. Springer, Wien-New York.

24. Bianciardi, M., Toschi, N., Edlow, B.E., Eichner, C., Setsompop, K., Polimeni, J.R., Brown, E.N., Kinney H.C., Rosen, B.R., Wald, L.L., 2015. Toward an in vivo neuroimaging template of human brainstem nuclei of the ascending arousal, autonomic, and motor systems. Brain Connectivity 5, 597-607.

25. Bianciardi, M., Strong, C., Toschi, N., Edlow, B.L., Fischl, B., Brown, E.N., Rosen,B.R., Wald, L.L., 2018. A probabilistic template of human mesopontine tegmental nuclei from in vivo 7 T MRI, Neuroimage 170, 222-230.

26. Garcia Gomar, M.G., Strong, C., Toschi N., Singh, K, Rosen, B.R., Wald, L.L., Bianciardi, M, 2019. In vivo probabilistic structural atlas of the inferior and superior colliculi, medial and lateral geniculate nuclei and superior olivary complex in humans based on 7 Tesla MRI. Frontiers Neurosci. 13, 764.

27. Keren, N.I., Lozar, C.T., Harris, K.C., Morgan, P.S., Eckert, M.A., 2009. In vivo mapping of the human locus coeruleus. Neuroimage 47, 1261–1267.

28. Pauli, W.M., Nili, A.N., Tyszka, J.M., 2018. A high-resolution probabilistic in vivo atlas of human subcortical brain nuclei. Sci Data 5, 609–13.

29. Priovoulos, N., Jacobs, H.I.L., Ivanov, D., Uludağ, K., Verhey, F.R.J., Poser, B.A., 2018. High-resolution in vivo imaging of human locus coeruleus by magnetization transfer MRI at 3T and 7T. Neuroimage 168, 427–436.

30. Priovoulos, N., Poser, B.A., Ivanov, D., Verhey, F.R.J., Jacobs, H.I.L., 2019. In vivo imaging of the nucleus of the solitary tract with Magnetization Transfer at 7 Tesla. Neuroimage 201, 116071.

31. Sasaki, M.m Shibata, E., Tohyama, K., Takahashi, J., Otsuka, K., Tsuchiya, K., Takahashi, S., Ehara, S., Terayama, Y., Sakai, A., 2006. Neuromelanin magnetic resonance imaging of locus ceruleus and substantia nigra in Parkinson’s disease. Neuroreport 17, 1215-1218.

32. Singh, K., Indovina, I., Augustinack, J., Nestor, K., García-Gomar MG, Staab, J.P., Bianciardi, M, 2020. Probabilistic template of the lateral parabrachial nucleus, medial parabrachial nucleus, vestibular nuclei complex and medullary viscera-sensory-motor nuclei complex in living humans from 7 Tesla MRI. Frontiers Neurosci. 13, 1425.

33. Singh, K., Garcia-Gomar, M.G., Bianciardi, M., 2020. Probabilistic structural atlas of human ventral tegmental area, mesencephalic and isthmic reticular formation using in-vivo 7 Tesla MRI. International Society for Magnetic Resonance in Medicine meeting, Sidney, Australia. Abstract Submission ID. 2065.

34. Tona, K.-D., Keuken, M.C., Rover, M., Lakke, E., Forstmann, B.U., Nieuwenhuis, S., Osch, M.J.P., 2017. In vivo visualization of the locus coeruleus in humans: quantifying the test–retest reliability. Brain Structure and Function 222, 4203–4217.

35. Visser, E., Keuken, M.C., Forstmann, B.U., Jenkinson, M., 2016. Automated segmentation of the substantia nigra, subthalamic nucleus and red nucleus in 7T data at young and old age. Neuroimage 139, 324–336.

36. Xiao, Y., Jannin, P., D'Albis, T., Guizard, N., Haegelen, C., Lalys, F., Vérin, M., Collins, D.L., 2014. Investigation of morphometric variability of subthalamic nucleus, red nucleus, and substantia nigra in advanced Parkinson's disease patients using automatic segmentation and PCA-based analysis. Hum Brain Mapp 35, 4330–4344.

37. Bär, K.-J., la Cruz, de, F., Schumann, A., Koehler, S., Sauer, H., Critchley, H., Wagner, G., 2016. Functional connectivity and network analysis of midbrain and brainstem nuclei. Neuroimage 134, 53–63. doi:10.1016/j.neuroimage.2016.03.071

38. Beliveau, V., Svarer, C., Frokjaer, V.G., Knudsen, G.M., Greve, D.N., Fisher, P.M., 2015. Functional connectivity of the dorsal and median raphe nuclei at rest. Neuroimage 116, 187–195. doi:10.1016/j.neuroimage.2015.04.065

39. Bianciardi, M., Toschi, N., Eichner, C., Polimeni, J.R., Setsompop, K., Brown, E.N., Hämäläinen, M.S., Rosen, B.R., Wald, L.L., 2016. In vivo functional connectome of human brainstem nuclei of the ascending arousal, autonomic, and motor systems by high spatial resolution 7-Tesla fMRI. MAGMA 29, 451-462.

40. Coulombe, M.-A., Erpelding, N., Kucyi, A., Davis, K.D., 2016. Intrinsic functional connectivity of periaqueductal gray subregions in humans. Hum Brain Mapp 37, 1514–1530.

41. Faull, O.K., Pattison, K.T.S., 2017. The cortical connectivity of the periaqueductal gray and the conditioned response to the threat of breathlessness. eLife:e21749.

42. Garcia-Gomar, M.G., Singh, K., Bianciardi, M., 2020.Redundancy of arousal brainstem structural connectivity pathways in humans by 7 Tesla HARDI. International Society for Magnetic Resonance in Medicine meeting, Sidney, Australia. Abstract Submission ID. 5175.

43. Jacobs, H.I.L., Müller-Ehrenberg, L., Priovoulos, N., Roebroeck, A., 2018. Curvilinear locus coeruleus functional connectivity trajectories over the adult lifespan: a 7T MRI study. Neurobiol. Aging 69, 167–176.

44. Singh, K., García-Gomar, M.G., Staab, J.P., Cauzzo, S., Indovina, I., Bianciardi, M., 2020. Structural connectome of autonomic and sensory brainstem nuclei in humans based on 7 Tesla high spatial and angular resolution diffusion imaging. International Society for Magnetic Resonance in Medicine meeting, Sidney, Australia. Abstract Submission ID. 5320.

45. Keren, N.I., Taheri, S., Vazey, E.M., Morgan, P.S., Granholm, A.-C.E., Aston-Jones, G.S., Eckert, M.A., 2015. Histologic validation of locus coeruleus MRI contrast in post-mortem tissue. Neuroimage 113, 235–245.

46. Betts, M.J., Kirilina, E., Otaduy, M.C.G., Ivanov, D., Acosta-Cabronero, J., Callaghan, M.F., Lambert, C., Cardenas-Blanco, A., Pine, K., Passamonti, L., Loane, C., Keuken, M.C., Trujillo, P., Lüsebrink, F., Mattern, H., Liu, K.Y., Priovoulos, N., Fliessbach, K., Dahl, M.J., Maaß, A., Madelung, C.F., Meder, D., Ehrenberg, A.J., Speck, O., Weiskopf, N., Dolan, R., Inglis, B., Tosun, D., Morawski, M., Zucca, F.A., Siebner, H.R., Mather, M., Uludağ, K., Heinsen, H., Poser, B.A., Howard, R., Zecca, L., Rowe, J.B., Grinberg, L.T., Jacobs, H.I.L., Düzel, E., Hämmerer, D., 2019. Locus coeruleus imaging as a biomarker for noradrenergic dysfunction in neurodegenerative diseases. Brain 142, 2558–2571.

47. Bianciardi, M., Izzy, S., Rosen, B., Wald, L.L., Edlow, B.L., 2017. Redundancy and resiliency of arousal mechanisms in traumatic coma patients. International Society for Magnetic Resonance in Medicine meeting, Paris, France. Program number 509.

48. Garcia-Gomar, M.G., Singh, K., Stauder, M.m Lewis, L.D., Wald L.L., Rosen, B.R., Videnovic, A., Bianciardi, M., 2020. Brainstem structural connectivity changes in prodromal Parkinson’s disease by 7 Tesla HARDI. International Society for Magnetic Resonance in Medicine meeting, Sidney, Australia. Abstract Submission ID. 1903.

49. Ohtsuka, C., Sasaki, M., Konno, K., Kato, K., Takahashi, J., Yamashita, F., Terayama, Y., 2014. Differentiation of early-stage parkinsonisms using neuromelanin-sensitive magnetic resonance imaging. Parkinsonism and Related Disorders 20, 755–760.

50. Takahashi, J., Shibata, T., Sasaki, M., Kudo, M., Yanezawa, H., Obara, S., Kudo, K., Ito, K., Yamashita, F., Terayama, Y., 2014. Detection of changes in the locus coeruleus in patients with mild cognitive impairment and Alzheimer's disease: High-resolution fast spin-echo T1-weighted imaging. Geriatrics & Gerontology International 15, 334–340.

Proc. Intl. Soc. Mag. Reson. Med. 28 (2020)