This talk will give an overview of flexible and stretchable electrical conductor concepts, from which textile-embedded coil elements and fully wearable receive arrays are formed. It will also touch on the electronic interface particular to wearable coil arrays in terms of tuning, matching, signal digitization and transmission.
1. Malko, J. A., McClees, E. C., Braun, I. F., Davis, P. C. & Hoffman, J. C. A flexible mercury-filled surface coil for MR imaging. Am. J. Neuroradiol. 7, 246–247 (1986).
2. Rousseau, J., Lecouffe, P. & Marchandise, X. A new, fully versatile surface coil for MRI. Magn. Reson. Imaging 8, 517–523 (1990).
3. Mager, D. et al. An MRI receiver coil produced by inkjet printing directly on to a flexible substrate. IEEE Trans. Med. Imaging 29, 482–487 (2010).
4. Jia, F. et al. Knee MRI under varying flexion angles utilizing a flexible flat cable antenna. NMR Biomed. 28, 460–467 (2015).
5. Corea, J. R. et al. Screen-printed flexible MRI receive coils. Nat. Commun. 7, 10839 (2016).
6. Vasanawala, S. S. et al. Development and Clinical Implementation of Very Light Weight and Highly Flexible AIR Technology Arrays. in Proc. Intl. Soc. Mag. Reson. Med. 24 (2016).
7. Zhang, B., Sodickson, D. K. & Cloos, M. A. A high-impedance detector-array glove for magnetic resonance imaging of the hand. Nat. Biomed. Eng. 2, 570–577 (2018).
8. Frass-Kriegl, R. et al. Flexible 23-channel coil array for high-resolution magnetic resonance imaging at 3 Tesla. PLoS One 13, e0206963 (2018).
9. McGee, K. P. et al. Characterization and evaluation of a flexible MRI receive coil array for radiation therapy MR treatment planning using highly decoupled RF circuits. Phys. Med. Biol. 63, (2018).
10. Winkler, S. A. et al. First clinical pilot study using screen-printed flexible MRI receive coils for pediatric applications. Proc. Intl. Soc. Mag. Reson. Med. 26 (2018).
11. Nohava, L. et al. Flexible multi-turn multi-gap coaxial RF coils ( MTMG-CCs ): design concept and bench validation. in Proc. Intl. Soc. Mag. Reson. Med. 27 (2019).
12. Obermann, M. et al. Ultra-flexible and light-weight 3-channel coaxial transmission line resonator receive-only coil array for 3T. in Proc. Intl. Soc. Mag. Reson. Med. 27 (2019).
13. Nordmeyer-Massner, J. A., De Zanche, N. & Pruessmann, K. P. Stretchable coil arrays: Application to knee imaging under varying flexion angles. Magn. Reson. Med. 67, 872–879 (2012).
14. Gruber, B. & Zink, S. Anatomically adaptive local coils for MRI Imaging – Evaluation of stretchable antennas at 1.5T. in Proc. Intl. Soc. Mag. Reson. Med. 24 (2016).
15. Vincent, J. M. & Rispoli, J. V. Conductive thread-based stretchable and flexible radiofrequency coils for magnetic resonance imaging. IEEE Trans. Biomed. Eng. (2019). doi:10.1109/TBME.2019.2956682
16. Kahraman Agir, B., Bayrambas, B., Yegin, K. & Ozturk Isik, E. Wearable and stretchable surface breast coil. in Proc. Intl. Soc. Mag. Reson. Med. 27 (2019).
17. Varga, M. et al. Adsorbed eutectic GaIn structures on a neoprene foam for stretchable MRI coils. Adv. Mater. 29, 1703744 (2017).
18. Port, A. et al. Liquid metal in stretchable tubes: A wearable 4-channel knee array. in Proc. Intl. Soc. Mag. Reson. Med. 27 (2019).
19. Port, A., Luechinger, R., Brunner, D. O. & Pruessmann, K. P. Towards kinematic knee imaging with a liquid metal array. in Proc. Intl. Soc. Mag. Reson. Med. 28 (2020).
20. Port, A., Luechinger, R., Brunner, D. O. & Pruessmann, K. P. Conductive Elastomer for Wearable RF Coils. in Proc. Intl. Soc. Mag. Reson. Med. 28 (2020).
21. Nordmeyer-Massner, J. A., De Zanche, N. & Pruessmann, K. P. Mechanically adjustable coil array for wrist MRI. Magn. Reson. Med. 61, 429–438 (2009).
22. Possanzini, C. et al. Scalability and channel independency of the digital broadband dStream architecture. in Proc. Intl. Soc. Mag. Reson. Med. 19 (2011).
23. Sporrer, B. et al. A fully integrated dual-channel on-coil CMOS receiver for array coils in 1.5-10.5 T MRI. IEEE Trans. Biomed. Circuits Syst. 11, 1245–1255 (2017).
24. Port, A. et al. Towards wearable MR detection: A stretchable wrist array with on-body digitization. in Proc. Intl. Soc. Mag. Reson. Med. 26 (2018).
25. Memis, O. G., Eryaman, Y., Aytur, O. & Atalar, E. Miniaturized fiber-optic transmission system for MRI signals. Magn. Reson. Med. 59, 165–173 (2008).
26. Yuan, J., Wei, J. & Shen, G. X. A 4-channel coil array interconnection by analog direct modulation optical link for 1.5-T MRI. IEEE Trans. Med. Imaging 27, 1432–1438 (2008).
27. Fandrey, S., Weiss, S. & Müller, J. A novel active MR probe using a miniaturized optical link for a 1.5-T MRI scanner. Magn. Reson. Med. 67, 148–155 (2012).
28. Reber, J. et al. An in-bore receiver for magnetic resonance imaging. IEEE Trans. Med. Imaging (2019). doi:10.1109/tmi.2019.2939090
29. Wei, J. et al. A realization of digital wireless transmission for MRI signals based on 802.11b. J. Magn. Reson. 186, 358–363 (2007).
30. Lu,
J. Y., Robb, F., Pauly, J. & Scott, G. Wireless Q-spoiling of Receive Coils
at 1.5T MRI. in Proc. Intl. Soc. Mag. Reson. Med 25 (2017).
31. Aggarwal, K. et al. A Millimeter-Wave Digital Link for Wireless MRI. IEEE Trans. Med. Imaging 36, 574–583 (2017).
32. Scott, G., Vasanawala, S., Robb, F., Stang, P. & Pauly, J. Pilot Tone Software Synchronization for Wireless MRI Receivers. in Proc. Intl. Soc. Mag. Reson. Med. 26 (2018).
33. Reykowski, A. et al. High Precision Wireless Clock Recovery for On-Coil MRI Receivers Using Round- Trip Carrier Phase Tracking. in Proc. Intl. Soc. Mag. Reson. Med. 26 (2018).
34. Byron, K. et al. An MRI Compatible RF MEMs Controlled Wireless Power Transfer System. IEEE Trans. Microw. Theory Tech. 67, 1717–1726 (2019).
35. Vassos, C., Robb, F., Vasanawala, S., Pauly, J. & Scott, G. Characterization of In-Bore 802.11ac Wi-Fi Performance. in Proc. Intl. Soc. Mag. Reson. Med. 27 (2019).
36. Ko, Y., Bi, W., Felder, J. & Shah, N. J. Wireless Digital Data Transfer based on WiGig/IEEE 802.11ad with Self-Shielded Antenna Gain Enhancement for MRI. in Proc. Intl. Soc. Mag. Reson. Med. 27 (2019).
37. Nohava, L., Ginefri, J., Willoquet, G., Laistler, E. & Frass-Kriegl, R. Perspectives in Wireless Radio Frequency Coil Development for Magnetic Resonance Imaging. Front. Phys. 8, 11 (2020).