High resolution ¹H NMR of cell extracts was used to assess the effects of hypoxia on choline metabolism in four glioblastoma (GBM) cell lines (9L, F98, U87 and U251). In addition, the effects of hypoxia on the efficacy of JAS239, a choline kinase alpha (ChoKα) inhibitor, was also assessed in these cell lines. Hypoxic preconditioning resulted in a decrease in phosphocholine (PC) in 9L, F98 and U251 cells. JAS239 significantly decreased PC/glycerophosphocholine (GPC) ratio in the hypoxic 9L and U251 cells compared to when these cells were grown in normoxic conditions.
1. Koh, M. Y., Spivak-Kroizman, T. R., & Powis, G. (2008). HIF-1 regulation: not so easy come, easy go. Trends in Biochemical Sciences, 33(11), 526–534. https://doi.org/10.1016/j.tibs.2008.08.002
2. Fidoamore, A., Cristiano, L., Antonosante, A., D’Angelo, M., Di Giacomo, E., Astarita, C., … Cimini, A. (2016). Glioblastoma Stem Cells Microenvironment: The Paracrine Roles of the Niche in Drug and Radioresistance. Stem Cells International, 2016. https://doi.org/10.1155/2016/6809105
3. Jawhari, S., Ratinaud, M. H., & Verdier, M. (2016). Glioblastoma, hypoxia and autophagy: A survival-prone “ménage-à-trois.” Cell Death and Disease. https://doi.org/10.1038/cddis.2016.318
4. Masoud, G. N., & Li, W. (2015). HIF-1α pathway: Role, regulation and intervention for cancer therapy. Acta Pharmaceutica Sinica B. https://doi.org/10.1016/j.apsb.2015.05.007
5. Bansal, A., Harris, R. A., & DeGrado, T. R. (2012). Choline phosphorylation and regulation of transcription of choline kinase α in hypoxia. Journal of Lipid Research, 53(1), 149–157. https://doi.org/10.1194/jlr.M021030
6. Glunde, K., Shah, T., Winnard, P. T., Raman, V., Takagi, T., Vesuna, F., … Bhujwalla, Z. M. (2008). Hypoxia regulates choline kinase expression through hypoxia-inducible factor-1α signaling in a human prostate cancer model. Cancer Research, 68(1), 172–180. https://doi.org/10.1158/0008-5472.CAN-07-2678
7. Arlauckas, S. P., Popov, A. V., & Delikatny, E. J. (2016). Choline kinase alpha - Putting the ChoK-hold on tumor metabolism. Progress in Lipid Research, 63, 28–40. https://doi.org/10.1016/j.plipres.2016.03.005
8. Al-Mutawa, Y. K., Herrmann, A., Corbishley, C., Losty, P. D., Phelan, M., & Sée, V. (2018). Effects of hypoxic preconditioning on neuroblastoma tumour oxygenation and metabolic signature in a chick embryo model. Bioscience Reports, 38(4), 1–15. https://doi.org/10.1042/BSR20180185
9. Adam Moser, Kevin Range, and D. M. Y. (2014). Silencing of the glycerophosphocholine phosphodiesterase GDPD5 alters the phospholipid metabolite profile in a breast cancer model in vivo as monitored by 31 P Magnetic Resonance Spectroscopy. NMR in Biomedicine, 26(6), 692–699. https://doi.org/10.1038/jid.2014.371
10. Moestue, S. A., Borgan, E., Huuse, E. M., Lindholm, E. M., Sitter, B., Børresen-Dale, A. L., … Gribbestad, I. S. (2010). Distinct choline metabolic profiles are associated with differences in gene expression for basal-like and luminal-like breast cancer xenograft models. BMC Cancer, 10(August). https://doi.org/10.1186/1471-2407-10-433
11. Stewart, J. D., Marchan, R., Lesjak, M. S., Lambert, J., Hergenroeder, R., Ellis, J. K., … Hengstler, J. G. (2012). Choline-releasing glycerophosphodiesterase EDI3 drives tumor cell migration and metastasis. Proceedings of the National Academy of Sciences of the United States of America, 109(21), 8155–8160. https://doi.org/10.1073/pnas.1117654109
12. Aboagye, E. O., & Bhujwalla, Z. M. (1999). Malignant transformation alters membrane choline phospholipid metabolism of human mammary epithelial cells. Cancer Research, 59(1), 80–84.
13. Kumar, M., Arlauckas, S. P., Saksena, S., Verma, G., Ittyerah, R., Pickup, S., … Poptani, H. (2015). Magnetic Resonance Spectroscopy for Detection of Choline Kinase Inhibition in the Treatment of Brain Tumors. Molecular Cancer Therapeutics, 14(4), 899–908. https://doi.org/10.1158/1535-7163.MCT-14-0775
14. Ortmann, B., Druker, J., & Rocha, S. (2014). Cell cycle progression in response to oxygen levels. Cellular and Molecular Life Sciences, 71(18), 3569–3582. https://doi.org/10.1007/s00018-014-1645-9
15. Seim, J., Graff, P., Åmellem, Landsverk, K. S., Stokke, T., & Pettersen, E. O. (2003). Hypoxia-induced irreversible S-phase arrest involves down-regulation of cyclin A. Cell Proliferation, 36(6), 321–332. https://doi.org/10.1046/j.1365-2184.2003.00288.x
16. Eales, K. L., Hollinshead, K. E. R., & Tennant, D. A. (2016). Hypoxia and metabolic adaptation of cancer cells. Oncogenesis, 5(1), e190–e190. https://doi.org/10.1038/oncsis.2015.50
17. Li, H., Lei, B., Xiang, W., Wang, H., Feng, W., Liu, Y., & Qi, S. (2017). Differences in protein expression between the U251 and U87 cell lines. Turkish Neurosurgery, 27(6), 894–903. https://doi.org/10.5137/1019-5149.JTN.17746-16.1
18. Barth, R. F. (2010). Rat brain tumor models in experimental neuro-oncology. Neuro-Oncology, 94(3), 299–312. https://doi.org/10.1007/s11060-009-9875-7.Rat