Sulcal pits is known to represent the first cortical folds emerging in early fetal life. However, little is known about sulcal pits in the fetal brain. Since fetal brain showed dynamic changes of cortical folding during the second half of gestation, it is necessary to investigate spatial and temporal patterns of sulcal pits in the fetal brain. We analyzed spatial distribution and quantified emergence timing of pits using 48 typically developing fetuses. Sulcal pits were uniformly distributed in the fetal brain, and their timing of emergence are regionally different. It demonstrates sulcal pits are important landmarks of human brain development.
1. Auzias, G., Brun, L., Deruelle, C. & Coulon, O. Deep sulcal landmarks: Algorithmic and conceptual improvements in the definition and extraction of sulcal pits. NeuroImage 111, 12–25 (2015).
2. Im, K. et al. Spatial distribution of deep sulcal landmarks and hemispherical asymmetry on the cortical surface. Cereb. Cortex N. Y. N 1991 20, 602–611 (2010).
3. Le Guen, Y. et al. Genetic Influence on the Sulcal Pits: On the Origin of the First Cortical Folds. Cereb. Cortex N. Y. N 1991 1–12 (2017) doi:10.1093/cercor/bhx098.
4. Lohmann, G., von Cramon, D. Y. & Steinmetz, H. Sulcal variability of twins. Cereb. Cortex N. Y. N 1991 9, 754–763 (1999).
5. Meng, Y., Li, G., Lin, W., Gilmore, J. H. & Shen, D. Spatial distribution and longitudinal development of deep cortical sulcal landmarks in infants. NeuroImage 100, 206–218 (2014).
6. Chen, C.-H. et al. Hierarchical Genetic Organization of Human Cortical Surface Area. Science 335, 1634 (2012).
7. Miller, J. A. et al. Transcriptional landscape of the prenatal human brain. Nature 508, 199–206 (2014).
8. O’Leary, D. D. M., Chou, S.-J. & Sahara, S. Area Patterning of the Mammalian Cortex. Neuron 56, 252–269 (2007).
9. Piao, X. et al. G Protein-Coupled Receptor-Dependent Development of Human Frontal Cortex. Science 303, 2033–2036 (2004).
10. Rakic, P. Genetic Control of Cortical Convolutions. Science 303, 1983–1984 (2004).
11. Rubenstein, J. L. R. & Rakic, P. Genetic Control of Cortical Development. Cereb. Cortex 9, 521–523 (1999).
12. Stahl, R. et al. Trnp1 Regulates Expansion and Folding of the Mammalian Cerebral Cortex by Control of Radial Glial Fate. Cell 153, 535–549 (2013).
13. Garel, C., Chantrel, E., Elmaleh, M., Brisse, H. & Sebag, G. Fetal MRI: normal gestational landmarks for cerebral biometry, gyration and myelination. Childs Nerv. Syst. ChNS Off. J. Int. Soc. Pediatr. Neurosurg. 19, 422–425 (2003).
14. Habas, P. A. et al. Early folding patterns and asymmetries of the normal human brain detected from in utero MRI. Cereb. Cortex N. Y. N 1991 22, 13–25 (2012).
15. Ronan, L. & Fletcher, P. C. From genes to folds: a review of cortical gyrification theory. Brain Struct. Funct. 220, 2475–2483 (2015).
16. Welker, W. Why Does Cerebral Cortex Fissure and Fold? in Cerebral Cortex 3–136 (Springer, Boston, MA, 1990). doi:10.1007/978-1-4615-3824-0_1.
17. Bystron, I., Blakemore, C. & Rakic, P. Development of the human cerebral cortex: Boulder Committee revisited. Nat. Rev. Neurosci. 9, 110–122 (2008).
18. Chi, J. G., Dooling, E. C. & Gilles, F. H. Gyral development of the human brain. Ann. Neurol. 1, 86–93 (1977).
19. Krsnik, Ž., Majić, V., Vasung, L., Huang, H. & Kostović, I. Growth of Thalamocortical Fibers to the Somatosensory Cortex in the Human Fetal Brain. Front. Neurosci. 11, 233 (2017).
20. Huang, H. et al. Anatomical Characterization of Human Fetal Brain Development with Diffusion Tensor Magnetic Resonance Imaging. J. Neurosci. 29, 4263–4273 (2009).
21. Vasung, L., Raguz, M., Kostovic, I. & Takahashi, E. Spatiotemporal Relationship of Brain Pathways during Human Fetal Development Using High-Angular Resolution Diffusion MR Imaging and Histology. Front. Neurosci. 11, 348 (2017).
22. Draganova, R. et al. Sound frequency change detection in fetuses and newborns, a magnetoencephalographic study. NeuroImage 28, 354–361 (2005).
23. Tarui, T. et al. Disorganized Patterns of Sulcal Position in Fetal Brains with Agenesis of Corpus Callosum. Cereb. Cortex 28, 3192–3203 (2018).
24. Yun, H. J. et al. Automatic labeling of cortical sulci for the human fetal brain based on spatio-temporal information of gyrification. NeuroImage 188, 473–482 (2019).
25. Im, K. et al. Quantitative Folding Pattern Analysis of Early Primary Sulci in Human Fetuses with Brain Abnormalities. Am. J. Neuroradiol. 38, 1449–1455 (2017).
26. Robbins, S., Evans, A. C., Collins, D. L. & Whitesides, S. Tuning and comparing spatial normalization methods. Med. Image Anal. 8, 311–323 (2004).