Epilepsy is a common neurological disorder diagnosed in children that can be associated with impairments in sustained attention. Attentional deficits are linked to neural dysfunction within or between the default mode network and central executive network. Limited research has examined abnormalities in these networks in children with epilepsy. Using resting-state fMRI we found reduced connectivity within and between both networks in patients (n=18) compared to controls (n=16). The neural alterations found in patients could be potential predictors of attentional deficits, and subsequently aid in identifying children requiring intervention, however further studies are warranted to confirm this.
Professor Amanda Wood was supported by a ERC-CoG2015 fellowship (682734-PROBIt).
1. Shinnar, S., & Pellock, J. M. (2002). Update on the epidemiology and prognosis of pediatric epilepsy. Journal of Child Neurology, 17(1_suppl), S4-S17.
2. Piccirilli, M., D'Alessandro, P., Sciarma, T., Cantoni, C., Dioguardi, M. S., Giuglietti, M., ... & Tiacci, C. (1994). Attention problems in epilepsy: possible significance of the epileptogenic focus. Epilepsia, 35(5), 1091-1096.
3. Cheng, D., Yan, X., Gao, Z., Xu, K., & Chen, Q. (2017). Attention contributes to arithmetic deficits in new-onset childhood absence epilepsy. Frontiers in psychiatry, 8, 166.
4. Sánchez‐Carpintero, R., & Neville, B. G. (2003). Attentional ability in children with epilepsy. Epilepsia, 44(10), 1340-1349.
5. Williams, J., Phillips, T., Griebel, M. L., Sharp, G. B., Lange, B., Edgar, T., & Simpson, P. (2001). Factors associated with academic achievement in children with controlled epilepsy. Epilepsy & Behavior, 2(3), 217-223.
6. Bonnelle, V., Leech, R., Kinnunen, K. M., Ham, T. E., Beckmann, C. F., De Boissezon, X., ... & Sharp, D. J. (2011). Default mode network connectivity predicts sustained attention deficits after traumatic brain injury. Journal of Neuroscience, 31(38), 13442-13451.
7. Fan, J., Gan, J., Liu, W., Zhong, M., Liao, H., Zhang, H., ... & Zhu, X. (2018). Resting-State Default Mode Network Related Functional Connectivity Is Associated With Sustained Attention Deficits in Schizophrenia and Obsessive-Compulsive Disorder. Frontiers in behavioral neuroscience, 12, 319.
8. Gascoigne, M. B., Smith, M. L., Barton, B., Webster, R., Gill, D., & Lah, S. (2017). Attention deficits in children with epilepsy: preliminary findings. Epilepsy & Behavior, 67, 7-12.
9. Maneshi, M., Moeller, F., Fahoum, F., Gotman, J., & Grova, C. (2012). Resting-state connectivity of the sustained attention network correlates with disease duration in idiopathic generalized epilepsy. PloS one, 7(12), e50359.
10. Kelly, A. C., Uddin, L. Q., Biswal, B. B., Castellanos, F. X., & Milham, M. P. (2008). Competition between functional brain networks mediates behavioral variability. Neuroimage, 39(1), 527-537.
11. Oser, N., Hubacher, M., Specht, K., Datta, A. N., Weber, P., & Penner, I. K. (2014). Default mode network alterations during language task performance in children with benign epilepsy with centrotemporal spikes (BECTS). Epilepsy & Behavior, 33, 12-17.
12. Ibrahim, G. M., Morgan, B. R., Lee, W., Smith, M. L., Donner, E. J., Wang, F., ... & Rutka, J. T. (2014). Impaired development of intrinsic connectivity networks in children with medically intractable localization‐related epilepsy. Human brain mapping, 35(11), 5686-5700.
13. Widjaja, E., Zamyadi, M., Raybaud, C., Snead, O. C., & Smith, M. L. (2013). Abnormal functional network connectivity among resting-state networks in children with frontal lobe epilepsy. American Journal of Neuroradiology, 34(12), 2386-2392.
14. Oyegbile, T. O., VanMeter, J. W., Motamedi, G. K., Bell, W. L., Gaillard, W. D., & Hermann, B. P. (2019). Default mode network deactivation in pediatric temporal lobe epilepsy: Relationship to a working memory task and executive function tests. Epilepsy & Behavior, 94, 124-130.
15. Li, Q., Cao, W., Liao, X., Chen, Z., Yang, T., Gong, Q., ... & Yao, D. (2015). Altered resting state functional network connectivity in children absence epilepsy. Journal of the neurological sciences, 354(1-2), 79-85.
16. Wilke, M., Holland, S. K., Altaye, M., & Gaser, C. (2008). Template-O-Matic: a toolbox for creating customized pediatric templates. Neuroimage, 41(3), 903-913.
17. Ashburner, J., Barnes, G., Chen, C., Daunizeau, J., Flandin, G., Friston, K., ... & Penny, W. (2014). SPM12 manual. Wellcome Trust Centre for Neuroimaging, London, UK.
18. Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage, 59(3), 2142-2154.
19. Zalesky, A., Fornito, A., & Bullmore, E. T. (2010). Network-based statistic: identifying differences in brain networks. Neuroimage, 53(4), 1197-1207.
20. Laufs, H., Hamandi, K., Salek‐Haddadi, A., Kleinschmidt, A. K., Duncan, J. S., & Lemieux, L. (2007). Temporal lobe interictal epileptic discharges affect cerebral activity in “default mode” brain regions. Human brain mapping, 28(10), 1023-1032.
21. Leech, R., & Sharp, D. J. (2013). The role of the posterior cingulate cortex in cognition and disease. Brain, 137(1), 12-32.
22. Alonazi, B. K., Keller, S. S., Fallon, N., Adams, V., Das, K., Marson, A. G., & Sluming, V. (2019). Resting‐state functional brain networks in adults with a new diagnosis of focal epilepsy. Brain and behavior, 9(1), e01168.
23. Sauseng, P., Hoppe, J., Klimesch, W., Gerloff, C., & Hummel, F. C. (2007). Dissociation of sustained attention from central executive functions: local activity and interregional connectivity in the theta range. European Journal of Neuroscience, 25(2), 587-593.
24. Sylvester, C. M., Corbetta, M., Raichle, M. E., Rodebaugh, T. L., Schlaggar, B. L., Sheline, Y. I., ... & Lenze, E. J. (2012). Functional network dysfunction in anxiety and anxiety disorders. Trends in neurosciences, 35(9), 527-535.
Figure 1. Functional connectivity differences between TDC and epilepsy patients within the DMN
Significant difference was identified using a network based statistics toolbox with a threshold of 2.3 and 5,000 permutations and displayed using Network Brain Viewer toolbox (P< 0.05). Reduction in connectivity between the left posterior cingulate cortex and right precuneus, and the left and right posterior cingulate cortex was found in epilepsy patients compared to TDC.
Figure 2. Functional connectivity differences between TDC and epilepsy patients within the CEN
Significant difference was identified using a network based statistics toolbox with a threshold of 2.3 and 5,000 permutations and displayed using Network Brain Viewer toolbox (P< 0.05). Reduction in connectivity between the left dorsolateral prefrontal cortex and the left/right posterior parietal cortex was found in epilepsy patients compared to TDC.
Figure 3. Functional connectivity differences between TDC and epilepsy patients between the DMN and CEN
Using the same threshold, reduction in connectivity between left parietal cortex and left/right posterior parietal cortex (PPC), right parietal cortex and right PPC, left PPC and left/right medial prefrontal cortex (mPFC), right dorsolateral prefrontal cortex (dlPFC) and left mPFC, and left dlPFC and left/right mPFC was found in epilepsy patients compared to TDC.