Fiber configurations in the human brain white matter and cortex are dominant with multiple orientations. In this work, we investigated the prevalence of crossing fibers in the brain, utilizing the latest multi-shell multi tissue (MSMT) constrained spherical deconvolution (CSD) method to analyze diffusion MRI data from the Human Connectome Project (HCP). Voxel-wise number of fiber orientation (NuFO) was calculated from 56 subjects, using the Generalized Richardson Lucy (GRL) framework, which offers robust fiber orientation distribution (FOD) estimation. Our results suggest that 83% of the voxels have at least one and 37% of the voxels have at least two fiber orientations.
[1] Y. Assaf, “Imaging laminar structures in the gray matter with diffusion MRI,” Neuroimage, no. December 2017, pp. 1–12, 2018.
[2] T. K. Truong, A. Guidon, and A. W. Song, “Cortical depth dependence of the diffusion anisotropy in the human cortical gray matter in vivo,” PLoS One, vol. 9, no. 3, 2014.
[3] J. A. McNab et al., “Surface based analysis of diffusion orientation for identifying architectonic domains in the in vivo human cortex,” Neuroimage, vol. 69, pp. 87–100, 2013.
[4] M. Aggarwal, D. W. Nauen, J. C. Troncoso, and S. Mori, “Probing region-specific microstructure of human cortical areas using high angular and spatial resolution diffusion MRI,” Neuroimage, vol. 105, pp. 198–207, 2015.
[5] J. A. McNab, S. Jbabdi, S. C. L. Deoni, G. Douaud, T. E. J. Behrens, and K. L. Miller, “High resolution diffusion-weighted imaging in fixed human brain using diffusion-weighted steady state free precession,” Neuroimage, vol. 46, no. 3, pp. 775–785, 2009.
[6] F. Dell’Acqua et al., “A modified damped Richardson-Lucy algorithm to reduce isotropic background effects in spherical deconvolution,” Neuroimage, vol. 49, no. 2, pp. 1446–1458, Jan. 2010.
[7] F. Guo, A. Leemans, M. A. Viergever, F. Dell’Acqua, and A. De Luca, “Generalized Richardson-Lucy (GRL) for analyzing multi-shell diffusion MRI data,” Oct. 2019.
[8] B. Jeurissen, J. D. Tournier, T. Dhollander, A. Connelly, and J. Sijbers, “Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data,” Neuroimage, vol. 103, pp. 411–426, 2014.
[9] M. F. Glasser et al., “The minimal preprocessing pipelines for the Human Connectome Project,” Neuroimage, vol. 80, pp. 105–124, Oct. 2013.
[10] D. C. Van Essen, S. M. Smith, D. M. Barch, T. E. J. Behrens, E. Yacoub, and K. Ugurbil, “The WU-Minn Human Connectome Project: An overview,” Neuroimage, vol. 80, pp. 62–79, 2013.
[11] J. Veraart, J. Sijbers, S. Sunaert, A. Leemans, and B. Jeurissen, “Weighted linear least squares estimation of diffusion MRI parameters: Strengths, limitations, and pitfalls,” Neuroimage, vol. 81, pp. 335–346, 2013.
[12] F. Dell’Acqua, A. Simmons, S. C. R. R. Williams, and M. Catani, “Can spherical deconvolution provide more information than fiber orientations? Hindrance modulated orientational anisotropy, a true-tract specific index to characterize white matter diffusion,” Hum. Brain Mapp., vol. 34, no. 10, pp. 2464–2483, 2013.
[13] D. Raffelt et al., “Apparent Fibre Density: A novel measure for the analysis of diffusion-weighted magnetic resonance images,” Neuroimage, vol. 59, no. 4, pp. 3976–3994, Feb. 2012.
[14] S. N. Sotiropoulos et al., “Advances in diffusion MRI acquisition and processing in the Human Connectome Project,” Neuroimage, vol. 80, pp. 125–143, 2013.
[15] R. Bammer et al., “Analysis and generalized correction of the effect of spatial gradient field distortions in diffusion-weighted imaging,” Magn. Reson. Med., vol. 50, no. 3, pp. 560–569, Sep. 2003.
[16] H. Y. Mesri, S. David, M. A. Viergever, and A. Leemans, “The adverse effect of gradient nonlinearities on diffusion MRI: From voxels to group studies,” Neuroimage, p. 116127, 2019.
[17] B. Fischl, “FreeSurfer,” NeuroImage, vol. 62, no. 2. Academic Press, pp. 774–781, 15-Aug-2012.
[18] C. Gaser and R. Dahnke, “CAT-a computational anatomy toolbox for the analysis of structural MRI data,” Hbm, vol. 2016, no. 7, pp. 336–48, 2016. [19] M. F. Glasser et al., “A multi-modal parcellation of human cerebral cortex,” Nature, vol. 536, no. 7615, pp. 171–178, 2016.
[20] B. Jeurissen, A. Leemans, J. D. Tournier, D. K. Jones, and J. Sijbers, “Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging,” Hum. Brain Mapp., vol. 34, no. 11, pp. 2747–2766, Nov. 2013.
[21] A. Roebroeck, K. L. Miller, and M. Aggarwal, “Ex vivo diffusion MRI of the human brain: Technical challenges and recent advances,” NMR Biomed., vol. 32, no. 4, p. e3941, Apr. 2019.
[22] L. J. Edwards, E. Kirilina, S. Mohammadi, and N. Weiskopf, “Microstructural imaging of human neocortex in vivo,” Neuroimage, vol. 182, no. October 2017, pp. 184–206, 2018.