4408

General tools for diffusion tensor distributions, and matrix-variate Gamma approximation for multidimensional diffusion MRI data
Alexis Reymbaut1,2
1Physical Chemistry, Lund University, Lund, Sweden, 2Random Walk Imaging AB, Lund, Sweden

Synopsis

Either on the voxel scale or within sub-voxel diffusion compartments, tissue microstructure can be described using a diffusion tensor distribution $$$\mathcal{P}(\mathbf{D})$$$. One way to resolve microstructural heterogeneity relies on choosing a plausible parametric functional form to approximate $$$\mathcal{P}(\mathbf{D})$$$. However, such a high-dimensional mathematical object is usually intractable. Here, we define matrix moments enabling the computation of diffusion metrics for any arbitrary functional choice approximating $$$\mathcal{P}(\mathbf{D})$$$. Applying these general tools to the matrix-variate Gamma distribution on the voxel scale, we obtain a new signal representation, the matrix-variate Gamma approximation, that we validate in vivo and in silico.

Introduction

The millimeter-scale resolution of diffusion MRI encompasses multiple microstructural tissue types, which implies that the diffusion signal probes a collection of microscopic diffusion profiles. Mathematically, this collection is described by a diffusion tensor distribution (DTD) $$$\mathcal{P}(\mathbf{D})$$$,1 yielding the diffusion signal$$\frac{\mathcal{S}(\mathbf{b})}{\mathcal{S}_0}=\int_{\mathrm{Sym}^+(3)}\!\mathcal{P}(\mathbf{D})\,\exp(-\mathbf{b}:\mathbf{D})\,\mathrm{d}\mathbf{D}=\left\langle\exp(-\mathbf{b}:\mathbf{D})\right\rangle\,,$$where $$$\mathbf{b}$$$ is the encoding tensor,2-4 $$$\mathrm{Sym}^+(3)$$$ denotes the space of 3x3 symmetric positive-definite matrices, ":" is the Frobenius inner product, and $$$\langle\cdot\rangle$$$ is the voxel-scale average. While nonparametric estimation of the DTD's features may be achievable,5-7 an alternative approach consists in approximating $$$\mathcal{P}(\mathbf{D})$$$ with a plausible parametric functional form whose parameters can be fitted against the acquired signals. This second approach, first implemented with distributions of scalar diffusivities,8-10 has recently been extended to DTDs in two ways:
  • the covariance tensor approximation,11 a two-term cumulant approach equivalent to considering a voxel-scale matrix-variate Gaussian (mv-Gaussian) DTD.12
  • the DIAMOND model,13-15 a compartmental model wherein each anisotropic sub-voxel compartment is described by a matrix-variate Gamma (mv-Gamma) DTD.12
The former approach considers a distribution that, unlike the mv-Gamma distribution, allows for unphysical negative-definite diffusion tensors. However, the latter approach relies on assumptions regarding the voxel content.

In this work, we first derive general tools facilitating the implementation of any functional choice for $$$\mathcal{P}(\mathbf{D})$$$. We then apply these tools to the mv-Gamma distribution and develop a new signal representation that describes the voxel content with a single mv-Gamma DTD: the "matrix-variate Gamma approximation". Finally, we validate this approximation in vivo and in silico.

Theory - Matrix moments of diffusion tensor distributions

We denote by "$$$\cdot$$$" and "$$$\otimes$$$" the matrix product and outer tensor product, respectively, with $$$\mathbf{D}^{\otimes\,\!2}\equiv\mathbf{D}\otimes\mathbf{D}$$$. Considering an arbitrary $$$\mathcal{P}(\mathbf{D})$$$, its moment-generating function writes12$$\mathcal{M}(\mathbf{Z})=\int\!\mathcal{P}(\mathbf{D})\,\exp\!\left[\mathrm{Tr}(\mathbf{Z}\cdot\mathbf{D})\right]\,\mathrm{d}\mathbf{D}=\left\langle\exp\!\left[\mathrm{Tr}(\mathbf{Z}\cdot\mathbf{D})\right]\right\rangle\,,$$for $$$\mathbf{Z}$$$ such that $$$\mathcal{M}(\mathbf{Z})$$$ is well-defined. $$$\mathcal{M}(\mathbf{Z})$$$ relates to the diffusion signal as15$$\mathcal{S}(\mathbf{b})=\mathcal{S}_0\,\mathcal{M}(-\mathbf{b})\,.$$By analogy with the moment-generating function of any scalar distribution, we showed that the first and second matrix derivatives of $$$\mathcal{M}(\mathbf{Z})$$$ yield the mean diffusion tensor $$$\langle\mathbf{D}\rangle$$$ and the fourth-order covariance tensor $$$\mathbb{C}=\langle\mathbf{D}^{\otimes\,\!2}\rangle-\langle\mathbf{D}\rangle^{\otimes\,\!2}$$$ associated to $$$\mathcal{P}(\mathbf{D})$$$. Indeed, we computed these derivatives using previous works16-18 as $$$\partial\mathcal{M}/\partial\mathbf{Z}=\left\langle\mathrm{exp}\!\left[\mathrm{Tr}(\mathbf{Z}\cdot\mathbf{D})\right]\,\mathbf{D}\right\rangle$$$ and $$$\partial^2\mathcal{M}/\partial\mathbf{Z}^2=\left\langle\mathrm{exp}\!\left[\mathrm{Tr}(\mathbf{Z}\cdot\mathbf{D})\right]\,\mathbf{D}\otimes\mathbf{D}\right\rangle$$$, deducing$$\langle\mathbf{D}\rangle=\left.\frac{\partial\mathcal{M}}{\partial\mathbf{Z}}\right|_{\mathbf{Z}=\mathbf{0}}\qquad\mathrm{and}\qquad\mathbb{C}=\left.\frac{\partial^2\mathcal{M}}{\partial\mathbf{Z}^2}\right|_{\mathbf{Z}=\mathbf{0}}-\left.\frac{\partial\mathcal{M}}{\partial\mathbf{Z}}\right|_{\mathbf{Z}=\mathbf{0}}^{\otimes\!\,2}\,.$$Additional efforts would yield the sixth-order skewness tensor11 $$$\mathbb{S}=\langle\mathbf{D}^{\otimes\,\!3}\rangle-3\langle\mathbf{D}\rangle\otimes\langle\mathbf{D}^{\otimes\!\,2}\rangle+2\langle\mathbf{D}\rangle^{\otimes\!\,3}$$$ via $$$\partial^3\mathcal{M}/\partial\mathbf{Z}^3$$$. While measures of voxel-scale diffusivity and anisotropy are extracted from $$$\langle\mathbf{D}\rangle$$$, measures of sub-voxel anisotropy and sub-voxel variance in isotropic diffusivities are obtained from $$$\mathbb{C}$$$ according to previous work.11

Validation: We used the above formulae to retrieve the known mean tensor $$$\mathbf{M}$$$ and covariance tensor $$$\mathbf{\Sigma}\otimes\mathbf{\Psi}$$$ of the mv-Gaussian distribution12$$\mathcal{P}_\mathrm{Gauss}(\mathbf{X})=\frac{1}{(2\pi)^{9/2}\,\mathrm{Det}(\mathbf{\Sigma})^{3/2}\,\mathrm{Det}(\mathbf{\Psi})^{3/2}}\,\exp\left[\mathrm{Tr}\left(-\frac{1}{2}\,\mathbf{\Sigma}^{-1}\cdot(\mathbf{X}-\mathbf{M})\cdot\mathbf{\Psi}^{-1}\cdot(\mathbf{X}-\mathbf{M})^\mathrm{T}\right)\right]\,,$$for $$$\mathbf{X},\mathbf{M}$$$ arbitrary 3x3 real matrices, and $$$\mathbf{\Sigma},\mathbf{\Psi}\in\mathrm{Sym}^+(3)$$$, given its moment-generating function12$$\mathcal{M}_\mathrm{Gauss}(\mathbf{Z})=\exp\left[\mathrm{Tr}\left(\mathbf{Z}\cdot\mathbf{M}+\frac{1}{2}\,\mathbf{Z}^\mathrm{T}\cdot\mathbf{\Sigma}\cdot\mathbf{Z}\cdot\mathbf{\Psi}\right)\right]\,.$$

Theory - Matrix-variate Gamma approximation

We considered the non-central mv-Gamma distribution12 used in DIAMOND:14,15$$\mathcal{P}_\Gamma(\mathbf{D})=\frac{\mathrm{Det}(\mathbf{D})^{\kappa-2}}{\mathrm{Det}(\mathbf{\Psi})^\kappa\,\Gamma_3(\kappa)}\,\exp\!\left[-\mathrm{Tr}(\mathbf{\Theta}+\mathbf{\Psi}^{-1}\cdot\mathbf{D})\right]\,\mathcal{F}_{0,1}(\kappa,\mathbf{\Theta}\cdot\mathbf{\Psi}^{-1}\cdot\mathbf{D})\,,$$where $$$\mathbf{D}\in\mathrm{Sym}^+(3)$$$, $$$\kappa\in\;]1,+\infty[$$$, $$$\mathbf{\Psi}\in\mathrm{Sym}^+(3)$$$, and $$$\mathbf{\Theta}\in \mathrm{Sym}(3)$$$, with $$$\mathrm{Sym}(3)$$$ denoting the space of 3x3 symmetric matrices. $$$\Gamma_3$$$ is the multivariate Gamma function and $$$\mathcal{F}_{0,1}$$$ is the hypergeometric function of matrix argument of order $$$(0,1)$$$. The moment-generating function $$$\mathcal{M}_\Gamma(\mathbf{Z})$$$ of $$$\mathcal{P}_\Gamma$$$ is defined as12,15$$\mathcal{M}_\Gamma(\mathbf{Z})=\left[\mathrm{Det}(\mathbf{I}_3-\mathbf{Z}\cdot\mathbf{\Psi})\right]^{-\kappa}\exp\!\left[\mathrm{Tr}\!\left(\left[(\mathbf{I}_3-\mathbf{Z}\cdot\mathbf{\Psi})^{-1}-\mathbf{I}_3\right]\cdot\mathbf{\Theta}\right)\right]$$for $$$\mathbf{Z}\in\mathrm{Sym}(3)$$$ such that $$$(\mathbf{I}_3-\mathbf{Z}\cdot\mathbf{\Psi})\in\mathrm{Sym}^+(3)$$$, with the 3x3 identity matrix $$$\mathbf{I}_3$$$. The diffusion signal associated to $$$\mathcal{P}_\Gamma$$$ is given by15$$\mathcal{S}_\Gamma(\mathbf{b})=\mathcal{S}_0\,\mathcal{M}_\Gamma(-\mathbf{b})=\mathcal{S}_0\,[\mathrm{Det}(\mathbf{I}_3+\mathbf{\Psi}\cdot\mathbf{b})]^{-\kappa}\exp\!\left[-\mathbf{b}:[(\mathbf{I}_3+\mathbf{\Psi}\cdot\mathbf{b})^{-1}\cdot\mathbf{\Psi}\cdot\mathbf{\Theta}]\right]\,.$$Using our expressions for the matrix moments, we retrieved the mean diffusion tensor of $$$\mathcal{P}_\Gamma$$$ (employed in DIAMOND),14,15 and computed for the first time its covariance tensor, yielding$$\langle\mathbf{D}\rangle=\mathbf{\Psi}\cdot[\kappa\mathbf{I}_3+\mathbf{\Theta}]\qquad\mathrm{and}\qquad\mathbb{C}=\langle\mathbf{D}\rangle\otimes\mathbf{\Psi}+\mathbf{\Psi}\otimes\langle\mathbf{D}\rangle-\kappa\,\mathbf{\Psi}\otimes\mathbf{\Psi}\,.$$ The expression of $$$\langle\mathbf{D}\rangle$$$ and the symmetry of the different tensors imply that $$$\mathbf{\Psi}$$$ and $$$\mathbf{\Theta}$$$ share the same eigenvectors. Therefore, fitting $$$\mathcal{S}_\Gamma$$$ requires 11 parameters: $$$\mathcal{S}_0$$$, $$$\kappa$$$, the eigenvalues for $$$\mathbf{\Psi}$$$ and $$$\mathbf{\Theta}$$$, and the Euler angles orienting $$$\mathbf{\Psi}$$$'s eigenvectors. If numerically non positive-semidefinite, $$$\mathbb{C}$$$ is substituted with the nearest symmetric positive-semidefinite tensor.19

Validation of the matrix-variate Gamma approximation

Statistical descriptors of interest: The mean diffusivity $$$\mathrm{E}[D_\mathrm{iso}]$$$, variance of isotropic diffusivities $$$\mathrm{V}[D_\mathrm{iso}]$$$, and normalized mean anisotropy $$$\tilde{\mathrm{E}}[D_\mathrm{aniso}^2]=\mathrm{E}[(D_\mathrm{iso}D_\Delta)^2]/\mathrm{E}[D_\mathrm{iso}]^2$$$ (similar to the microscopic $$$\mathrm{FA}$$$),10 with the isotropic diffusivity $$$D_\mathrm{iso}$$$, normalized diffusion anisotropy $$$D_\Delta\in[-0.5,1]$$$, and the voxel-scale expectation and variance $$$\mathrm{E}[\cdot]$$$ and $$$\mathrm{V}[\cdot]$$$, respectively.

In vivo human brain: After implementing an iterative fitting of $$$\mathcal{S}_\Gamma$$$ in Matlab,20 we applied it to a dataset available online,21 which signal-to-noise ratio (SNR) was around 30 in the corona radiata.22 Fig.1 presents the acquisition scheme and shows that mv-Gamma reasonably fits the signals arising from diverse voxel contents. Fig.2 features consistent estimated parameter maps of $$$\mathcal{S}_0$$$, $$$\mathrm{E}[D_\mathrm{iso}]$$$, $$$\mathrm{V}[D_\mathrm{iso}]$$$ and $$$\mathrm{FA}$$$. However, $$$\tilde{\mathrm{E}}[D_\mathrm{aniso}^2]$$$ vanishes in areas of crossing fibers.

In silico: Various voxel contents were simulated in terms of distributions of $$$D_\mathrm{iso}$$$, $$$D_\Delta$$$ and orientations, with identical in vivo acquisition scheme and SNR. Medians and interquartile ranges on estimating $$$\mathrm{E}[D_\mathrm{iso}]$$$, $$$\tilde{\mathrm{E}}[D_\mathrm{aniso}^2]$$$ and $$$\mathrm{V}[D_\mathrm{iso}]$$$ were assessed across 100 Rician-noise realizations of the covariance tensor approximation (Cov)11 and the matrix-variate Gamma approximation (MV-Gamma), and compared to the simulated ground truth in isotropic (Fig.3) and anisotropic (Fig.4) systems. MV-Gamma adequately captures voxel-scale anisotropy and shows superior performance to Cov in accurately capturing $$$\mathrm{V}[D_\mathrm{iso}]$$$, but is inferior in estimating $$$\mathrm{E}[D_\mathrm{iso}]$$$. Besides, it cannot capture sub-voxel anisotropy ($$$\tilde{\mathrm{E}}[D_\mathrm{aniso}^2]$$$) in anisotropic systems with low orientational order, thereby confirming the previous in vivo observations.

Conclusion

We defined matrix moments enabling the computation of diffusion metrics for any functional choice approximating a diffusion tensor distribution $$$\mathcal{P}(\mathbf{D})$$$. Applying these tools to the mv-Gamma distribution up to its second matrix moment yields a new signal representation, the matrix-variate Gamma approximation, that performs adequately in orientationally ordered anisotropic systems (further justifying its use within DIAMOND),14,15 but misses sub-voxel anisotropy in systems with low orientational order. This missing information is likely contained in the sixth-order skewness tensor, which can be obtained via a third matrix moment.

Acknowledgements

This work was financially supported by the Swedish Foundation for Strategic Research (AM13-0090, ITM17-0267) and the Swedish Research Council (2018-03697).

References

1. Jian B et al., A novel tensor distribution model for the diffusion-weighted MR signal. Neuroimage 2007;37(1):164-176

2. Eriksson S et al., Isotropic diffusion weighting in PGSE NMR by magic-angle spinning of the q-vector. Journal of Magnetic Resonance 2013;226:13-18.

3. Eriksson S et al., NMR diffusion-encoding with axial symmetry and variable anisotropy: Distinguishing between prolate and oblate microscopic diffusion tensors with unknown orientation distribution. The Journal of Chemical Physics 2015;142(10):104201.

4. Topgaard D, Multidimensional diffusion MRI. Journal of Magnetic Resonance 2017; 275:98-113.

5. de Almeida Martins J P and Topgaard D, Two-dimensional correlation of isotropic and directional diffusion using NMR. Physics Review Letters 2016;116:087601.

6. de Almeida Martins J P and Topgaard, D Multidimensional correlation of nuclear relaxation rates and diffusion tensors for model-free investigations of heterogeneous anisotropic porous materials. Scientific Reports 2018;8,2488.

7. Topgaard D. Diffusion tensor distribution imaging. NMR in Biomedicine 2019;32(5):e4066

8. Yablonskiy D A et al., Statistical model for diffusion attenuated MR signal, Magnetic Resonance in Medicine 2003;50:664.

9. Jbabdi S et al., Model-based analysis of multishell diffusion MR data for tractography: How to get over fitting problems. Magnetic Resonance in Medicine 2012;68:1846.

10. Lasic S et al., Microanisotropy imaging: quantification of microscopic diffusion anisotropy and orientational order parameter by diffusion MRI with magic-angle spinning of the q-vector. Frontiers in Physics 2014;2:11.

11. Westin C-F et al. Q-space trajectory imaging for multidimensional diffusion MRI of the human brain. NeuroImage 2016;135:345-362.

12. Guptar A K and Nagar D K, Matrix Variate Distributions. Edited by Chapman and Hall/CRC, Boca Raton, Florida, 2000.

13. Scherrer B et al., Characterizing brain tissue by assessment of the distribution of anisotropic microstructural environments in diffusion-compartment imaging (DIAMOND). Magnetic Resonance in Medicine 2016;76:963.

14. Scherrer B et al., Decoupling axial and radial tissue heterogeneity in diffusion compartment imaging. In: Information Processing in Medical Imaging (IPMI) 2017;440-452.

15. Reymbaut A et al., The “Magic DIAMOND" method: probing brain microstructure by combining b-tensor encoding and advanced diffusion compartment imaging. In: International Society for Magnetic Resonance Imaging (ISMRM) 2018.

16. Brewer J, Kronecker products and matrix calculus in system theory. IEEE Transactions on Circuits and Systems 1978;25:772.

17. Laue S et al., Computing higher order derivatives of matrix and tensor expressions. In: Advances in Neural Information Processing Systems (NIPS) 2018.

18. Laue S et al., Matrix calculus, www.matrixcalculus.org. Accessed: 2019-07-30.

19. Higham N J, Computing a nearest symmetric positive semidefinite matrix. Linear algebra and its applications 1988;103:103-118.

20. Nilsson M et al., An open-source framework for analysis of multidimensional diffusion MRI data implemented in MATLAB. In: International Society for Magnetic Resonance Imaging (ISMRM) 2018.

21. Szczepankiewicz F et al., Linear, planar and spherical tensor-valued diffusion MRI data by free waveform encoding in healthy brain, water, oil and liquid crystals. Data in Brief 2019;25:104208.

22. Szczepankiewicz F et al., Tensor-valued diffusion encoding for diffusional variance decomposition (DIVIDE): Technical feasibility in clinical MRI systems. PLoS ONE 2019;14(3):e0214238.

Figures

Figure 1. Left: Acquisition scheme ($$$\mathbf{b}$$$'s trace $$$b$$$, normalized anisotropy $$$b_\Delta$$$ and orientation $$$(\Theta,\Phi)$$$) with sorted acquisition number $$$n_\mathrm{acq}$$$, and measured (black) and fitted (color) normalized signals $$$\tilde{S}$$$ in selected voxels (cerebrospinal fluid in blue, grey matter in green, white matter in red, and crossing area in orange). Right: $$$\mathcal{S}_0$$$ map indicating the location of the selected voxels.

Figure 2. Left: Estimated axial parameter maps of $$$\mathcal{S}_0$$$ (compared to the measured $$$\mathcal{S}_{0,\mathrm{measured}}$$$), $$$\mathrm{E}[D_\mathrm{iso}]$$$ and $$$\mathrm{V}[D_\mathrm{iso}]$$$. Grey scale codes for magnitude. Right: Estimated axial parameter maps of $$$\mathrm{FA}$$$ and $$$\tilde{E}[D_\mathrm{aniso}^2]$$$. Color codes for orientations and opacity codes for magnitude.

Figure 3. Characterization of isotropic systems with varying $$$\mathrm{V}[D_\mathrm{iso}]$$$ at low $$$\mathrm{E}[D_\mathrm{iso}]$$$ (top), and at high $$$\mathrm{E}[D_\mathrm{iso}]$$$ (bottom). Each system consists of two identical Gaussian distributions of $$$D_\mathrm{iso}$$$. While the left panels feature both SNR=30 and infinite-SNR results, the right panels illustrate the voxel contents for both cases.

Figure 4. Characterization of anisotropic components with constant orientation and varying $$$\tilde{E}[D_\mathrm{aniso}^2]$$$ (top), and with varying orientational order and constant $$$\tilde{E}[D_\mathrm{aniso}^2]$$$ (bottom). The order parameter $$$\mathrm{OP}=\mathrm{E}[P_2(\cos\theta)]$$$ (with second Legendre polynomial $$$P_2$$$) is set by a Watson distribution of these identical components (Gaussian distributions of $$$D_\Delta$$$ with constant $$$\mathrm{E}[D_\mathrm{iso}]$$$). Other conventions are identical to those of Figure 3.

Proc. Intl. Soc. Mag. Reson. Med. 28 (2020)
4408