Auditory offset responses due to cessation of auditory stimuli have been previously described, suggesting the existence of a dedicated auditory offset pathway. These responses are of major importance in auditory perception, as temporal cues like sound duration can be crucial for sound identification and interpretation. Still, studies on the subject are scarce compared to classic auditory onset responses. Here, we investigate the BOLD dynamics upon the cessation of sound using BOLD fMRI in the rat. We find differences between Onset and Offset paradigms suggesting negative BOLD responses observed in the latter are likely due to an active process.
[1] Kopp-Scheinpflug, C., L. Sinclair,J., Jennifer F. Linden, J. (2018), When Sound Stops: Offset Responses in the Auditory System, Trends Neurosci., https://doi.org/10.1016/j.tins.2018.08.009
[2] Phillips, D. P., Hall, S. E., & Boehnke, S. E. (2002). Central auditory onset responses, and temporal asymmetries in auditory perception. Hearing Research. https://doi.org/10.1016/S0378-5955(02)00393-3
[3] Young, E. D., & Brownell, W. E. (1976). Responses to tones and noise of single cells in dorsal cochlear nucleus of unanesthetized cats. Journal of Neurophysiology. https://doi.org/10.1152/jn.1976.39.2.282
[4] Cavaco, S., & Lewicki, M. S. (2007). Statistical modeling of intrinsic structures in impacts sounds. The Journal of the Acoustical Society of America. https://doi.org/10.1121/1.2729368
[5] Sohoglu, E., & Chait, M. (2016). Neural dynamics of change detection in crowded acoustic scenes. NeuroImage. https://doi.org/10.1016/j.neuroimage.2015.11.050
[6] Wessinger, C., Buonocore, M., Kussmaul, C., Mangun, G. (1997), Tonotopy in human auditory cortex examined with functional magnetic resonance imaging, Human Brain Mapping, https://doi.org/10.1002/(SICI)1097-0193(1997)5:1<18::AID-HBM3>3.0.CO;2-Q
[7] Cheung, M. M., Lau, C., Zhou, I. Y., Chan, K. C., Cheng, J. S., Zhang, J. W., … Wu, E. X. (2012). BOLD fMRI investigation of the rat auditory pathway and tonotopic organization. NeuroImage. https://doi.org/10.1016/j.neuroimage.2012.01.087
[8] Cheung, M. M., Lau, C., Zhou, I. Y., Chan, K. C., Zhang, J. W., Fan, S. J., & Wu, E. X. (2012). High fidelity tonotopic mapping using swept source functional magnetic resonance imaging. NeuroImage. https://doi.org/10.1016/j.neuroimage.2012.03.031
[9] Zhang, J. W., Lau, C., Cheng, J. S., Xing, K. K., Zhou, I. Y., Cheung, M. M., & Wu, E. X. (2013). Functional magnetic resonance imaging of sound pressure level encoding in the rat central auditory system. NeuroImage. https://doi.org/10.1016/j.neuroimage.2012.09.069
[10] Lau, C., Zhang, J. W., Cheng, J. S., Zhou, I. Y., Cheung, M. M., & Wu, E. X. (2013). Noninvasive fMRI Investigation of Interaural Level Difference Processing in the Rat Auditory Subcortex. PLoS ONE. https://doi.org/10.1371/journal.pone.0070706
[11] Blazquez Freches, G., Chavarrias, C., & Shemesh, N. (2018). BOLD-fMRI in the mouse auditory pathway. NeuroImage. https://doi.org/10.1016/j.neuroimage.2017.10.027
[12] Grothe, B. (1994). Interaction of excitation and inhibition in processing of pure tone and amplitude-modulated stimuli in the medial superior olive of the mustached bat. Journal of Neurophysiology. https://doi.org/10.1152/jn.1994.71.2.706
[13] Burger, R. M., & Pollak, G. D. (1998). Analysis of the role of inhibition in shaping responses to sinusoidally amplitude-modulated signals in the inferior colliculus. Journal of Neurophysiology. https://doi.org/10.1152/jn.1998.80.4.1686
[14] Takahashi, H., Nakao, M., & Kaga, K. (2004). Cortical mapping of auditory-evoked offset responses in rats. NeuroReport. https://doi.org/10.1097/01.wnr.0000134848.63755.5c
[15] Kiang, N. Y., Pfeiffer, R. R., Warr, W. B., & Backus, A. S. (1965). Stimulus coding in the cochlear nucleus. Transactions of the American Otological Society. https://doi.org/10.1177/000348946507400216
[16] Kadner A., Berrebi, A.S. (2008), Encoding of temporal features of auditory stimuli in the medial nucleus of the trapezoid body and superior paraolivary nucleus of the rat., Neuroscience, DOI: 10.1016/j.neuroscience.2007.11.008
[17] Felix, R. A., Fridberger, A., Leijon, S., Berrebi, A. S., & Magnusson, A. K. (2011). Sound rhythms are encoded by postinhibitory rebound spiking in the superior paraolivary nucleus. Journal of Neuroscience. https://doi.org/10.1523/JNEUROSCI.2450-11.2011
[18] Akimov A., Egorova M, Ehret G. (2017), Spectral summation and facilitation in on- and off-responses for optimized representation of communication calls in mouse inferior colliculus. Eur. J. Neurosci., DOI: 10.1111/ejn.13488
[19] Kasai, M. et al. (2012) Distinct neural firing mechanisms to tonal stimuli offset in the inferior colliculus of mice in vivo. Neurosci. Res. 73, 224–237
[20] Xie, R., Gittelman, J. X., & Pollak, G. D. (2007). Rethinking tuning: In vivo whole-cell recordings of the inferior colliculus in awake bats. Journal of Neuroscience. https://doi.org/10.1523/JNEUROSCI.2865-07.2007
[21] Sten, S., Lundengård, K., Witt, S. T., Cedersund, G., Elinder, F., & Engström, M. (2017). Neural inhibition can explain negative BOLD responses: A mechanistic modelling and fMRI study. NeuroImage. https://doi.org/10.1016/j.neuroimage.2017.07.002
[22] Klingner, C. M., Ebenau, K., Hasler, C., Brodoehl, S., Görlich, Y., & Witte, O. W. (2011). Influences of negative BOLD responses on positive BOLD responses. NeuroImage. https://doi.org/10.1016/j.neuroimage.2011.01.028 [
23] Antunes, F. M., & Malmierca, M. S. (2014). An overview of stimulus-specific adaptation in the auditory thalamus. Brain Topography. https://doi.org/10.1007/s10548-013-0342-6
[24] Schmitter, S., Diesch, E., Amann, M., Kroll, A., Moayer, M., & Schad, L. R. (2008). Silent echo-planar imaging for auditory FMRI. Magnetic Resonance Materials in Physics, Biology and Medicine. https://doi.org/10.1007/s10334-008-0132-4
[25] Schwarzbauer, C., Davis, M. H., Rodd, J. M., & Johnsrude, I. (2006). Interleaved silent steady state (ISSS) imaging: A new sparse imaging method applied to auditory fMRI. NeuroImage. https://doi.org/10.1016/j.neuroimage.2005.08.025
[26] Perrachione, T. K., & Ghosh, S. S. (2013). Optimized design and analysis of sparse-sampling fMRI experiments. Frontiers in Neuroscience. https://doi.org/10.3389/fnins.2013.00055