Trajectory deformations in non-Cartesian scans can lead to significant image artifacts, while in comparison the effect on Cartesian scans is evidentially minor. We propose a novel approach for trajectory correction relying on the minimization of a suitable measure between a non-Cartesian image and a Cartesian reference image, given a trajectory deformation model. Our proof of concept is applied on simulated as well as measured data. The approach is fast, accurate and easily extendable. Given the right use-case, no extra scan time is required (e.g. mixed spiral-Cartesian MR Fingerprinting).
1. Tan H., Meyer C. H. (2009). Estimation of k‐space trajectories in spiral MRI. Magn. Reson. Med., 61: 1396-1404. doi:10.1002/mrm.21813
2. Ding X., Tkach J., Ruggieri P., Perl J., Masaryk T. (1997). Improvement of spiral MRI with the measured k‐space trajectory. J. Magn. Reson. Imaging, 7: 938-940. doi:10.1002/jmri.1880070525
3. Mason G. F., Harshbarger T., Hetherington H. P., Zhang Y., Pohost G. M. and Twieg D. B. (1997). A Method to measure arbitrary k‐space trajectories for rapid MR imaging. Magn. Reson. Med., 38: 492-496. doi:10.1002/mrm.1910380318
4. Liu Q., Hughes D. G., Allen P. S. (1994). Quantitative characterization of the eddy current fields in a 40‐cm bore superconducting magnet. Magn. Reson. Med., 31: 73-76. doi:10.1002/mrm.1910310112
5. Spielman D. M., Pauly J. M. (1995). Spiral imaging on a small‐bore system at 4.7t. Magn. Reson. Med., 34: 580-585. doi:10.1002/mrm.1910340414
6. Morich, Michael A. (1994). MRI Self-Shielded Gradient Coils, US Patent 5,296,810
7. Mulder Gerardus B. J., Ham Cornelis L. G., Mateboer Aart J., Roozen Nicolaas B., Verbunt Johannes P. M. (2001). MRI Apparatus with a Mechanically Integrated Eddy Current Shield in the Gradient System, US Patent US 6,326,788 B1
8. Crozier Stuart, Doddrell David M. (1995), A design methodology for short, whole-body, shielded gradient coils for MRI, Magnetic Resonance Imaging, Volume 13, Issue 4, Pages 615-620, ISSN 0730-725X
9. DeMeester Gordon D., Morich Michael A., Shvartsman Shmaryu M. (2002). Efficiently Shielded MRI Gradient Coil with Discretely or Continuously Variable Field of View, US Patent US 6,479,999 B1
10. Papadakis Nikolaos G., Wilkinson Adam A., Carpenter T. Adrian, Hall Laurance D. (1997). A general method for measurement of the time integral of variant magnetic field gradients: Application to 2D spiral imaging, Magnetic Resonance Imaging, Volume 15, Issue 5, Pages 567-578, ISSN 0730-725X
11. Duyn Jeff H., Yang Yihong, Frank Joseph A., van der Veen Jan Willem (1998). Simple Correction Method for k-Space Trajectory Deviations in MRI, Journal of Magnetic Resonance, Volume 132, Issue 1, Pages 150-153, ISSN 1090-7807
12. Liu H., Matson G. B. (2014). Accurate Measurement of Magnetic Resonance Imaging Gradient Characteristics. Materials (Basel);7(1):1–15. doi:10.3390/ma7010001
13. Dale BM, Duerk JL. The Use of Measured K-space Trajectory For Reconstruction of Radial MRI Data; Proceedings of the 10th Meeting of the ISMRM; Honolulu, HI. 2002.p. 2334.
14. Peters DC, Derbyshire JA, McVeigh ER. Centering the projection reconstruction trajectory: Reducing gradient delay errors. Magn. Reson. Med. 2003;50(1):1–6.
15. Reeder SB, Atalar E, Faranesh AZ, McVeigh ER. Referenceless interleaved echo-planar imaging. Magn. Reson. Med. 1999;41(1):87–94.
16. Onodera T, Matsui S, Sekihara K, Kohno H. A Method of measuring field-gradient modulation shapes. Applications to high-speed NMR spectroscopic imaging. J. Phys E: Sci Instrum. 1987;20:416–419.
17. Takahashi A, Peters T. Compensation of multi-dimensional selective excitation pulses using measured k-space trajectories. Magn. Reson. Med. 1995;34(3):446–456.
18. Alley MT, Pineda AR, Bammer R, Markl M, Pelc NJ. A Method for MR Eddy Current Characterization and Compensation; Proceedings of the 11th Meeting of the ISMRM; Toronto, Canada. 2003.p. 1019.
19. Vannesjo S. J., Haeberlin M., Kasper L., Pavan M., Wilm B. J., Barmet C., Pruessmann K. P. (2013). Gradient system characterization by impulse response measurements with a dynamic field camera. Magn Reson Med, 69: 583-593. doi:10.1002/mrm.24263
20. Campbell-Washburn A. E., Xue H., Lederman R. J., Faranesh A. Z., Hansen M. S. (2016). Real-time distortion correction of spiral and echo planar images using the gradient system impulse response function. Magn Reson Med.;75(6):2278–2285. doi:10.1002/mrm.25788
21. Berzl Martin, Pfeil, Antoine, Meyer, Craig, Campbell-Washburn, Adrienne, Körzdörfer, Gregor, Nittka, Mathias, Maier, Andreas, Pfeuffer, Josef (2017). Improved spiral trajectory correction using the gradient impulse response function (GIRF) with application to MR Fingerprinting, Proc. Intl. Soc. Mag. Reson. Med. 25
22. Robison, R. K., Devaraj, A. and Pipe, J. G. (2010). Fast, simple gradient delay estimation for spiral MRI. Magn. Reson. Med., 63: 1683-1690. doi:10.1002/mrm.22327
23. Jiang W, Larson P. E. Z., Lustig M. (2018). Simultaneous auto‐calibration and gradient delays estimation (SAGE) in non‐Cartesian parallel MRI using low‐rank constraints. Magn Reson Med.; 80: 2006– 2016. https://doi.org/10.1002/mrm.27168
24. Glover G. H. (1999). Simple analytic spiral K‐space algorithm. Magn. Reson. Med., 42: 412-415. doi:10.1002/(SICI)1522-2594(199908)42:2<412::AID-MRM25>3.0.CO;2-U
25. Hardy Christopher J., Cline Harvey E. (1989). Broadband nuclear magnetic resonance pulses with two‐dimensional spatial selectivity, Journal of Realized Physics 66:4, 1513-1516
26. King K. F., Foo T., Crawford C. R. (1995). Optimized gradient waveforms for spiral scanning. Magn. Reson. Med., 34: 156-160. doi:10.1002/mrm.1910340205
27. Brodsky E. K., Samsonov A. A., Block W. F. (2009), Characterizing and correcting gradient errors in non-cartesian imaging: Are gradient errors linear time-invariant (LTI)?. Magn Reson Med. 2009;62(6):1466–1476. doi:10.1002/mrm.22100
28. Alok Dutt (1993). Fast Fourier Transforms for Non-Equispaced Data. Ph.D. Dissertation. Yale University, New Haven, CT, USA. UMI Order No. GAX93-29344
29. Liu Q. H., Nguyen N. (1998). Nonuniform fast Fourier transform (NUFFT) algorithm and its applications, IEEE Antennas and Propagation Society International Symposium. 1998 Digest. Antennas: Gateways to the Global Network. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.98CH36, Atlanta, GA, 1998, pp. 1782-1785 vol.3. doi: 10.1109/APS.1998.690967
30. Lustig M. and Pauly J. M. (2010). SPIRiT: Iterative self‐consistent parallel imaging reconstruction from arbitrary k‐space. Magn. Reson. Med., 64: 457-471. doi:10.1002/mrm.22428
31. Fessler Jeffrey, Sutton Brad (2001). A Min-Max Approach to the Multidimensional Nonuniform FFT: Application to Tomographic Image Reconstruction. IEEE International Conference on Image Processing. 1. 706 - 709 vol.1. 10.1109/ICIP.2001.959143.
32. Pipe, J. G. and Menon, P. (1999), Sampling density compensation in MRI: Rationale and an iterative numerical solution. Magn. Reson. Med., 41: 179-186. doi:10.1002/(SICI)1522-2594(199901)41:1<179::AID-MRM25>3.0.CO;2-V
33. Hoge, R. D., Kwan, R. K. and Bruce Pike, G. (1997), Density compensation functions for spiral MRI. Magn. Reson. Med., 38: 117-128. doi:10.1002/mrm.1910380117
34. Bernstein, Matt A.; King, Kevin F.; Zhou, Xiaohong Joe. Handbook of MRI Pulse Sequence. Elsevier academic press; 2004. p. 319-323.
35. Martín Abadi, et al. (2015). TensorFlow: Large-scale machine learning on heterogeneous systems. Software available from tensorflow.org.
36. Kingma D. P., Ba J. L. (2015). Adam: A Method for Stochastic Optimization. International Conference on Learning Representations, 1–13.
37. Ma D., Gulani V., Seiberlich N., et al. (2013). Magnetic resonance fingerprinting. Nature;495(7440):187–192. doi:10.1038/nature11971
38. Jiang, Y., Ma, D., Seiberlich, N., Gulani, V. and Griswold, M. A. (2015), MR fingerprinting using fast imaging with steady state precession (FISP) with spiral readout. Magn. Reson. Med., 74: 1621-1631. doi:10.1002/mrm.25559
39. Keenan K, Stupic K, Boss M, et al. Multi-Site, Multi-Vendor Comparison of T1 Measurement Using ISMRM/NIST System Phantom. Proceeding 24th Annu. Meet. ISMRM; Singapore. 2016. p. 3290