Given the use of T1rho as a measure of cartilage health and an early indicator for osteoarthritis, it is important to understand the T1rho relaxation mechanism including its somewhat unexplained angular dependence. In the hope of finding a range of spin-lock frequencies (FSLs) with a decreased angular dependence, we generated T1rho maps of in-vivo femoral knee cartilage at various FSLs from 100Hz to 1kHz. We found a visible angular dependence in T1rho measurements for all FSLs including 1kHz. If there exists a range of FSL with little or no angular dependence it is higher than 1kHz.
1. Nishioka, H., Hirose, J., Nakamura, E., Oniki, Y., Takada, K., Yamashita, Y., & Mizuta, H. (2012). T1ρ and T2 mapping reveal the in vivo extracellular matrix of articular cartilage. Journal of Magnetic Resonance Imaging, 35(1), 147-155.
2. Regatte, R. R., Akella, S. V., Wheaton, A. J., Lech, G., Borthakur, A., Kneeland, J. B., & Reddy, R. (2004). 3D-T1ρ-relaxation mapping of articular cartilage: In vivo assessment of early degenerative changes in symptomatic osteoarthritic subjects1. Academic radiology, 11(7), 741-749.
3. Mlynarik, V., Szomolanyi, P., Toffanin, R., Vittur, F., & Trattnig, S. (2004). Transverse relaxation mechanisms in articular cartilage. Journal of Magnetic Resonance, 169(2), 300-307.
4. Wang, N., & Xia, Y. (2011). Dependencies of multi-component T2 and T1ρ relaxation on the anisotropy of collagen fibrils in bovine nasal cartilage. Journal of magnetic Resonance, 212(1), 124-132.
5. Nozaki, T., Kaneko, Y., Hon, J. Y., Kaneshiro, K., Schwarzkopf, R., Hara, T., & Yoshioka, H. (2016). T1rho mapping of entire femoral cartilage using depth-and angle-dependent analysis. European radiology, 26(6), 1952-1962.
6. Shao, H., Pauli, C., Li, S., Ma, Y., Tadros, A. S., Kavanaugh, A., ... & Du, J. (2017). Magic angle effect plays a major role in both T1rho and T2 relaxation in articular cartilage. Osteoarthritis and cartilage, 25(12), 2022-2030.
7. Sveinsson, B., Chaudhari, A. S., Gold, G. E., & Hargreaves, B. A. (2017). A simple analytic method for estimating T2 in the knee from DESS. Magnetic resonance imaging, 38, 63-70. 8. Witschey II, W. R., Borthakur, A., Elliott, M. A., Mellon, E., Niyogi, S., Wallman, D. J., ... & Reddy, R. (2007). Artifacts in T1ρ-weighted imaging: Compensation for B1 and B0 field imperfections. Journal of magnetic resonance, 186(1), 75-85.
9. Li, X., Han, E. T., Busse, R. F., & Majumdar, S. (2008). In vivo T1ρ mapping in cartilage using 3D magnetization‐prepared angle‐modulated partitioned k‐space spoiled gradient echo snapshots (3D MAPSS). Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, 59(2), 298-307.
10. Arjun D. Desai, Marco Barbieri, Valentina Mazzoli, Elka Rubin, Marianne S. Black, Lauren E. Watkins, … Akshay S. Chaudhari. (2019, February 7). DOSMA: A deep-learning, open-source framework for musculoskeletal MRI analysis (Version v0.0.9 (prerelease)). Zenodo. http://doi.org/10.5281/zenodo.2559549
11. Monu, U. D., Jordan, C. D., Samuelson, B. L., Hargreaves, B. A., Gold, G. E., & McWalter, E. J. (2017). Cluster analysis of quantitative MRI T2 and T1ρ relaxation times of cartilage identifies differences between healthy and ACL-injured individuals at 3T. Osteoarthritis and cartilage, 25(4), 513-520.