We present DCE acquisition with high spatial resolution that excels the guidelines of the ACR for spatial resolution, maintaining whole brain coverage at all times, while at the same time providing a temporal sampling rate of fast enough to make accurate flow and permeability measurements from T1-weighted DCE MRI in a clinical neuro-oncology setting possible.Furthermore we demonstrate the use of radial spoke aggregation in GRASP reconstruction for DCE perfusion imaging of the brain and show preliminary results on the impact of variable temporal resolution on estimating pharmacokinetic models.
[1] Cercignani, M., Dowell, N.G. and Tofts, P.S. eds., 2018. Quantitative MRI of the brain: principles of physical measurement. CRC Press.
[2] Sourbron, S., Ingrisch, M., Siefert, A., Reiser, M. and Herrmann, K., 2009. Quantification of cerebral blood flow, cerebral blood volume, and blood–brain‐barrier leakage with DCE‐MRI. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, 62(1), pp.205-217.
[3] Sourbron, S.P. and Buckley, D.L., 2013. Classic models for dynamic contrast‐enhanced MRI. NMR in Biomedicine, 26(8), pp.1004-1027.
[4] Anzalone, N., Castellano, A., Cadioli, M., Conte, G.M., Cuccarini, V., Bizzi, A., Grimaldi, M., Costa, A., Grillea, G., Vitali, P. and Aquino, D., 2018. Brain gliomas: multicenter standardized assessment of dynamic contrast-enhanced and dynamic susceptibility contrast MR images. Radiology, 287(3), pp.933-943.
[5] Larsson, C., Kleppestø, M., Rasmussen Jr, I., Salo, R., Vardal, J., Brandal, P. and Bjørnerud, A., 2013. Sampling requirements in DCE‐MRI based analysis of high grade gliomas: Simulations and clinical results. Journal of Magnetic Resonance Imaging, 37(4), pp.818-829.
[6] Block, K.T., Chandarana, H., Milla, S., Bruno, M., Mulholland, T., Fatterpekar, G., Hagiwara, M., Grimm, R., Geppert, C., Kiefer, B. and Sodickson, D.K., 2014. Towards routine clinical use of radial stack-of-stars 3D gradient-echo sequences for reducing motion sensitivity. Journal of the Korean Society of Magnetic Resonance in Medicine, 18(2), pp.87-106.
[7] Feng, L., Grimm, R., Block, K.T., Chandarana, H., Kim, S., Xu, J., Axel, L., Sodickson, D.K. and Otazo, R., 2014. Golden‐angle radial sparse parallel MRI: combination of compressed sensing, parallel imaging, and golden‐angle radial sampling for fast and flexible dynamic volumetric MRI. Magnetic resonance in medicine, 72(3), pp.707-717.
[8] Winkelmann, S., Schaeffter, T., Koehler, T., Eggers, H. and Doessel, O., 2006. An optimal radial profile order based on the Golden Ratio for time-resolved MRI. IEEE transactions on medical imaging, 26(1), pp.68-76.
[9] M. Jenkinson, C.F. Beckmann, T.E. Behrens, M.W. Woolrich, S.M. Smith. FSL. NeuroImage, 62:782-90, 2012
[10] Chappell, M.A., Groves, A.R., Woolrich, M.W., “Variational Bayesian inference for a non-linear forward model”, IEEE Trans. Sig. Proc., 2009, 57(1), 223–236.
[11] Groves, A. R., Chappell, M. A., & Woolrich, M. W. (2009). “Combined spatial and non-spatial prior for inference on MRI time-series.” NeuroImage, 45(3), 2009.doi:10.1016/j.neuroimage.2008.12.027