Cerebral blood flow during awake and pharmacologically induced sleep was investigated with arterial spin labeling imaging in healthy young volunteers. Participants were scanned after a good night sleep and in a separate session after 24h sleep deprivation. Participant received 10mg Zolpidem after the sleep deprivation to maximize sleep in the scanner. There was a significant reduction in cerebral blood flow in the sleep condition compared to awake. The most prominent changes were observed in the Thalamus, cerebellum, posterior cingulate gyrus, these areas stayed significant after family wise error correction at a cluster level.
[1] Zimmerman, J., Naidoo, N., Raizen, D. and Pack, A. (2008). Conservation of sleep: insights from non-mammalian model systems. Trends in Neurosciences, 31(7), pp.371- 376.
[2] Luyster, F., Strollo, P., Zee, P. and Walsh, J. (2012). Sleep: A Health Imperative. Sleep, 35(6), pp.727-734.
[3] Borbély, A., Daan, S., Wirz-Justice, A. and Deboer, T. (2016). The two-process model of sleep regulation: a reappraisal. Journal of Sleep Research, 25(2), pp.131-143.
[4] Tononi, G. and Cirelli, C. (2014). Sleep and the Price of Plasticity: From Synaptic and Cellular Homeostasis to Memory Consolidation and Integration. Neuron, 81(1), pp.12-34.
[5] Strømstad, M., Voldsbekk, I., Bjørnerud, A., Elvsåshagen, T. and Groote, I. (2017). Changes in cerebral blood flow after a day of waking and a night of sleep deprivation. Sleep Medicine, 40, p.e316.
[6] Asllani, I., Borogovac, A. and Brown, T. (2008). Regression algorithm correcting for partial volume effects in arterial spin labeling MRI. Magnetic Resonance in Medicine, 60(6), pp.1362-1371.
[7] Braun, A. R., Balkin, T. J., Wesensten, N. J., Carson, R. E., Varga,M., Baldwin, P., Selbie, S., Belenky, G. and Herscovitch, P.Regional cerebral blood fow throughout the sleep-wake cycle. An H215O PET study. Brain, 1997, 120: 1173-1197.
[8] Hofle, N., Paus, T., Reutens, D., Fiset, P., Gotman, J., Evans, A. C.and Jones, B. E. Regional cerebral blood flow changes as a function of delta and spindle activity during slow wave sleep in humans. J. Neurosci., 1997, 17: 4800-4808.
[9] Maquet, P., Degueldre, C., Delfiore, G., Aerts, J., Peters, J. M., Luxen , A. and Franck, G. Functional neuroanatomy of human slow wave sleep. J. Neurosci., 1997, 17: 2807-2812.
[10] Andersson, J. L. R., Onoe, H., Hetta, J., Lidstrom, K., Valind, S., Lilja, A., Sundin, A., Fasth, K. J., Westerberg, G., Broman, J. E.,Watanabe, Y. and Langstrom, B. Brain networks affected by synchronized sleep visualized by positron emission tomography. J. Cereb. Blood Flow Metab., 1998, 18: 701-715.
[11] Kajimura, N., Uchiyama, M., Takayama, Y., Uchida, S., Uema, T.,Kato, M., Sekimoto, M., Watanabe, T., Nakajima, T., Horikoshi,S., Ogawa, K., Nishikawa, M., Hiroki, M., Kudo, Y., Matsuda,H., Okawa, M. and Takahashi, K. Activity of midbrain reticular formation and neocortex during the progression of human non-rapid eye movement sleep. J. Neurosci., 1999, 19: 10065-10073.