Huntington’s disease is a neurodegenerative disorder leading to debilitating cognitive and motor symptoms. It has been proposed that impaired myelination contributes to HD pathogenesis. As well, evidence shows that myelin formation underlies the learning of new motor skills. Here we demonstrate that two months of drumming and rhythm exercises result in an increase in a proxy MRI measure of myelin in patients with early HD relative to healthy controls. This suggests that tailored behavioural stimulation has the potential to result in neural benefits in early HD that could be exploited for future therapeutics aiming to delay disease progression.
1. Bartzokis, G., Lu, P. H., Tishler, T. A., Fong, S. M., Oluwadara, B., Finn, J. P., … Perlman, S. (2007). Myelin breakdown and iron changes in Huntington’s disease: Pathogenesis and treatment implications. Neurochemical Research, 32(10), 1655–1664. https://doi.org/10.1007/s11064-007-9352-7
2. Huang, B., Wei, W., Wang, G., Gaertig, M. A., Feng, Y., Wang, W., … Li, S. (2015). Mutant huntingtin downregulates myelin regulatory factor-mediated myelin gene expression and affects mature oligodendrocytes. Neuron, 85(6), 1212–1226. https://doi.org/10.1016/j.neuron.2015.02.026
3. Jin, J., Peng, Q., Hou, Z., Jiang, M., Wang, X., Langseth, A. J., … Duan, W. (2015). Early white matter abnormalities, progressive brain pathology and motor deficits in a novel knock-in mouse model of Huntington’s disease. Human Molecular Genetics, 24(9), 2508–2527. https://doi.org/10.1093/hmg/ddv016
4. Teo, R. T. Y., Hong, X., Yu-Taeger, L., Huang, Y., Tan, L. J., Xie, Y., … Pouladi, M. A. (2016). Structural and molecular myelination deficits occur prior to neuronal loss in the YAC128 and BACHD models of Huntington disease. Human Molecular Genetics, 25(13), 2621–2632. https://doi.org/10.1093/hmg/ddw122
5. Martenson, R. E. (1992). Myelin. CRC Press.
6. Yhnell, E., Lelos, M. J., Dunnett, S. B., & Brooks, S. P. (2016). Cognitive training modifies disease symptoms in a mouse model of Huntington’s disease. Experimental Neurology, 282, 19–26. https://doi.org/10.1016/j.expneurol.2016.05.008
7. McKenzie, I. A., Ohayon, D., Li, H., de Faria, J. P., Emery, B., Tohyama, K., & Richardson, W. D. (2014). Motor skill learning requires active central myelination. Science (New York, N.Y.), 346(6207), 318–322. https://doi.org/10.1126/science.1254960
8. Sampaio-Baptista, C., Khrapitchev, A. A., Foxley, S., Schlagheck, T., Scholz, J., Jbabdi, S., … Johansen-Berg, H. (2013). Motor Skill Learning Induces Changes in White Matter Microstructure and Myelination. The Journal of Neuroscience, 33(50), 19499–19503. https://doi.org/10.1523/JNEUROSCI.3048-13.2013
9. Pierpaoli, C., & Basser, P. J. (1996). Toward a quantitative assessment of diffusion anisotropy. Magnetic Resonance in Medicine, 36(6), 893–906.
10. Lövdén, M., Bodammer, N. C., Kühn, S., Kaufmann, J., Schütze, H., Tempelmann, C., … Lindenberger, U. (2010). Experience-dependent plasticity of white-matter microstructure extends into old age. Neuropsychologia, 48(13), 3878–3883. https://doi.org/10.1016/j.neuropsychologia.2010.08.02611.
11. Scholz, J., Klein, M. C., Behrens, T. E. J., & Johansen-Berg, H. (2009). Training induces changes in white matter architecture. Nature Neuroscience, 12(11), 1370-1371.
12. Zatorre, R. J., Fields, R. D., & Johansen-Berg, H. (2012). Plasticity in gray and white: Neuroimaging changes in brain structure during learning. Nature Neuroscience, 15(4), 528-536.
13. De Santis, S., Drakesmith, M., Bells, S., Assaf, Y., & Jones, D. K. (2014). Why diffusion tensor MRI does well only some of the time: Variance and covariance of white matter tissue microstructure attributes in the living human brain. Neuroimage, 89(100), 35–44. https://doi.org/10.1016/j.neuroimage.2013.12.003
14. Sled, J. G. (2018). Modelling and interpretation of magnetization transfer imaging in the brain. NeuroImage, 182, 128–135. https://doi.org/10.1016/j.neuroimage.2017.11.065
15. Assaf, Y., & Basser, P. J. (2005). Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain. NeuroImage, 27(1), 48–58.
16. Metzler-Baddeley, C., Cantera, J., Coulthard, E., Rosser, A., Jones, D. K., & Baddeley, R. J. (2014). Improved Executive Function and Callosal White Matter Microstructure after Rhythm Exercise in Huntington’s Disease. Journal of Huntington’s Disease, 3(3), 273–283. https://doi.org/10.3233/JHD-140113
17. Henkelman, R. M., Stanisz, G. J., & Graham, S. J. (n.d.). Magnetization transfer in MRI: A review. NMR in Biomedicine, 14(2), 57–64. https://doi.org/10.1002/nbm.683
18. Hofer, S., & Frahm, J. (2006). Topography of the human corpus callosum revisited—Comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. NeuroImage, 32(3), 989–994. https://doi.org/10.1016/j.neuroimage.2006.05.044
19. Dell’acqua, F., Scifo, P., Rizzo, G., Catani, M., Simmons, A., Scotti, G., & Fazio, F. (2010). A modified damped Richardson-Lucy algorithm to reduce isotropic background effects in spherical deconvolution. NeuroImage, 49(2), 1446–1458. https://doi.org/10.1016/j.neuroimage.2009.09.033
20. Leemans, A, Jeurissen, B., Sijbers, J., & Jones, D. K. (n.d.). ExploreDTI: a graphical toolbox for processing, analyzing, and visualizing diffusion MR data. 1.
21. Penke, L., Maniega, S. M., Murray, C., Gow, A. J., Hernández, M. C. V., Clayden, J. D., … Deary, I. J. (2010). A General Factor of Brain White Matter Integrity Predicts Information Processing Speed in Healthy Older People. Journal of Neuroscience, 30(22), 7569–7574. https://doi.org/10.1523/JNEUROSCI.1553-10.2010
22. Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E., Mackay, C. E., … Behrens, T. E. J. (2006). Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data. NeuroImage, 31(4), 1487–1505. https://doi.org/10.1016/j.neuroimage.2006.02.024
23. Ou, X., Sun, S.-W., Liang, H.-F., Song, S.-K., & Gochberg, D. F. (2009). The MT pool size ratio and the DTI radial diffusivity may reflect the myelination in shiverer and control mice. NMR in Biomedicine, 22(5), 480–487. https://doi.org/10.1002/nbm.1358