We propose a method to estimate multiple sclerosis (MS) lesion age (less than or greater than a year old) using non-gadolinium magnetic resonance imaging. The method utilizes the less invasive Quantitative Susceptibility Map. Radiomic features are calculated over a lesion and a random forest classification model is used. In a validation set, the model has an AUC of 0.79 (95% CI: [0.63, 0.86]) and an accuracy of 0.73 (95% CI: [0.60, 0.80]). This method can be used to aid in the diagnosis of MS, as part of the diagnostic criteria is to show lesion dissemination in time.
1. W. I. McDonald, A. Compston, G. Edan, D. Goodkin, H.-P. Hartung, F. D. Lublin, H. F. McFarland, D. W. Paty, C. H. Polman, S. C. Reingold, et al., “Recommended diagnostic cri- teria for multiple sclerosis: guidelines from the international panel on the diagnosis of multiple sclerosis,” Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, vol. 50, no. 1, pp. 121–127, 2001.
2. C. H. Polman, S. C. Reingold, G. Edan, M. Filippi, H.-P. Hartung, L. Kappos, F. D. Lublin, L. M. Metz, H. F. McFarland, P. W. O’Connor, et al., “Diagnostic criteria for multiple scle- rosis: 2005 revisions to the mcdonald criteria,” Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, vol. 58, no. 6, pp. 840– 846, 2005.
3. C. H. Polman, S. C. Reingold, B. Banwell, M. Clanet, J. A. Cohen, M. Filippi, K. Fujihara, E. Havrdova, M. Hutchinson, L. Kappos, et al., “Diagnostic criteria for multiple sclerosis: 2010 revisions to the mcdonald criteria,” Annals of neurology, vol. 69, no. 2, pp. 292–302, 2011.
4. A. J. Thompson, B. L. Banwell, F. Barkhof, W. M. Carroll, T. Coetzee, G. Comi, J. Correale, F. Fazekas, M. Filippi, M. S. Freedman, et al., “Diagnosis of multiple sclerosis: 2017 revisions of the mcdonald criteria,” The Lancet Neurology, vol. 17, no. 2, pp. 162–173, 2018.
5. V. Gulani, F. Calamante, F. G. Shellock, E. Kanal, S. B. Reeder, et al., “Gadolinium de- position in the brain: summary of evidence and recommendations,” The Lancet Neurology, vol. 16, no. 7, pp. 564–570, 2017.
6. Y. Wang, P. Spincemaille, Z. Liu, A. Dimov, K. Deh, J. Li, Y. Zhang, Y. Yao, K. M. Gillen, A. H. Wilman, et al., “Clinical quantitative susceptibility mapping (qsm): biometal imaging and its emerging roles in patient care,” Journal of Magnetic Resonance Imaging, vol. 46, no. 4, pp. 951–971, 2017.
7. C. Wisnieff, S. Ramanan, J. Olesik, S. Gauthier, Y. Wang, and D. Pitt, “Quantitative suscep- tibility mapping (qsm) of white matter multiple sclerosis lesions: interpreting positive suscep- tibility and the presence of iron,” Magnetic resonance in medicine, vol. 74, no. 2, pp. 564–570, 2015.
8. C. Langkammer, T. Liu, M. Khalil, C. Enzinger, M. Jehna, S. Fuchs, F. Fazekas, Y. Wang, and S. Ropele, “Quantitative susceptibility mapping in multiple sclerosis,” Radiology, vol. 267, no. 2, pp. 551–559, 2013.
9. C. Stu ̈ber, D. Pitt, and Y. Wang, “Iron in multiple sclerosis and its noninvasive imaging with quantitative susceptibility mapping,” International journal of molecular sciences, vol. 17, no. 1, p. 100, 2016.
10. M. Kolossv ́ary, J. Kar ́ady, B. Szilveszter, P. Kitslaar, U. Hoffmann, B. Merkely, and P. Maurovich-Horvat, “Radiomic features are superior to conventional quantitative computed tomographic metrics to identify coronary plaques with napkin-ring sign,” Circulation: Car- diovascular Imaging, vol. 10, no. 12, p. e006843, 2017.
11. M. Kolossva ́ry, M. Kellermayer, B. Merkely, and P. Maurovich-Horvat, “Cardiac computed tomography radiomics,” Journal of thoracic imaging, vol. 33, no. 1, pp. 26–34, 2018.