While radiation therapy plays an essential role in the management of brain tumor patients, exposure to radiation has been known to lead to declines in neurocognitive performance and vascular injury. As there remains a need for a reliable marker and predictor of patient outcome, this study explores the usefulness of functional connectivity measurements derived from 7T rsfMRI. We found that temporal properties, specifically low-frequency signals of some large-scale brain networks,are associated with more severe cognitive impairment and vascular injury, highlighting the potential benefit of using rsfMRI for treatment planningand prediction of patient outcome after RT.
1. Greene-schloesser, D., & Robbins, M. E. (2012). Radiation-induced cognitive impairment- from bench to bedside. Neuro-Oncology, 37–44.
2. Greene-Schloesser, D., Robbins, M. E., Peiffer, A. M., Shaw, E. G., Wheeler, K. T., & Chan, M. D. (2012). Radiation-induced brain injury: A review. Frontiers in Oncology,2(July), 73.
3. Roddy, E., Sear, K., Felton, E., Tamrazi, B., Gauvain, K., Torkildson, J., Buono, B. D., Samuel, D., Haas-Kogan, D. A., Chen, J., Goldsby, R. E., Banerjee, A., Lupo, J. M., Molinaro, A. M., Fullerton, H. J., & Mueller, S. (2016). Presence of cerebral microbleeds is associated with worse executive function in pediatric brain tumor survivors. Neuro-Oncology, 18(11), 1548–1558.
4. Morrison, M., Mueller, S., Felton, E., Jakary, A., Stoller, S., Avadiappan, S., Yuan, J., Molinaro, A.M., Braunstein, S., Banerjee, A., Hess, C.P., Lupo, J.M. Rate of radiation-induced microbleed formation on 7T MRI relates to cognitive impairment in young brain tumor survivors. Submitted to Radiology Oct 2019.
5. van den Heuvel, M.P., Hulshoff Pol, H.E. (2010). Exploring the brain network: A review on resting-state fMRI functional connectivity. European Neuropsychopharmacology, 20(8):519-534.
6. Lin, Q., Rosenberg, M.D., Kwangsun, Y., Hsu, T.W., O’Connell, T.P., Chun, M.M. (2018). Resting-state functional connectivity predicts cognitive impairment related to Alzheimer’s disease. Front Aging Neurosci. 10:94, Epub.
7. Wolters, A.F., van de Weijer, S.C.F., Leentjens, A.F.G., Duits, A. A., Jacobs, H.I.L., Kuijf, M.L. (2019). Resting-state fMRI in Parkinson’s disease patients with cognitive impairment: A meta-analysis. Parkinsonism Relat Disord.62:16-27.
8. Kesler, S.R., Ogg, R., Reddick, W.E., Phillips, M., Scoggins, M., Glass, J.O., Cheung, Y.T., Pui, C.H., Robison, L.L., Hudson, M.M., Krull, K.R. (2018). Brain network connectivity and executive function in long-term survivors of childhood acute lymphoblastic leukemia. Brain Connect.8(6):333-342.
9. Bian, W., Hess, C.P., Chang, S.M., Nelson, S.J., Lupo, J.M. (2013). Computer-aided detection of radiation-induced cerebral microbleeds on susceptibility-weighted MR images. NeuroImage Clin. 2:282–290.
10. Morrison, M.A., Payabvash, S., Chen, Y., Avadiappan, S., Shah, M., Zou, X., Hess, C.P., Lupo, J.M. (2018). A user-guided tool for semi-automated cerebral microbleed detection and volume segmentation: Evaluating vascular injury and data labelling for machine learning. NeuroImage Clin. 20:498–505.
11. Whitfield-Gabrieli S, Nieto-Castanon A. (2012). Conn:A functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connectivity.2(3):125-41.
12. Cox, R.W. (1996). AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research. 29:162-173.
13. Dunkley, B. T., Da Costa, L., Bethune, A., Jetly, R., Pang, E. W., Taylor, M. J., Doesburg, S. M. (2015). Low-frequency connectivity is associated with mild traumatic brain injury. Neuroimage Clin. 7:611-21