In this work, we study the influence of prior knowledge in learning-based non-Cartesian 2D CINE MR image reconstruction. The proposed approach uses a novel minimal deep learning setup to embed the acquired non-Cartesian multi-coil data and conventional spatio-temporal (3D and 2D+t) Fields-of-Experts regularization in a proximal gradient variational network, achieving promising results for up to 12-fold retrospectively undersampled tiny golden-angle radial CINE imaging.
1. Klaas P. Pruessmann, Markus Weiger, Peter Börnert, Peter Boesiger. Advances in sensitivity encoding with arbitrary k‐space trajectories. Magnetic Resonance in Medicine, 46:638-651, 2001.
2. Hong Jung, Kyunghyun Sung, Krishna S. Nayak, Eung Yeop Kim,and Jong Chul Ye. k-t FOCUSS: A general compressed sensing framework for high resolution dynamic MRI. Magnetic Resonance in Medicine, 61(1):103-116, 2009.
3. Felix A. Breuer, Peter Kellman, Mark A. Griswold, Peter M. Jakob. Dynamic autocalibrated parallel imaging using temporal GRAPPA (TGRAPPA). Magnetic Resonance in Medicine, 53(4):981-985, 2005.
4. Peter Kellman, Frederick H. Epstein, and Elliot R. McVeigh. Adaptive sensitivity encoding incorporating temporal filtering (TSENSE). Magnetic Resonance in Medicine, 45(5):846-852, 2001.
5. Jeffrey Tsao, Peter Boesiger, Klaas P. Pruessmann. k-t BLAST and k-t SENSE: Dynamic MRI with high frame rate exploiting spatiotemporal correlations. Magnetic Resonancein Medicine, 50(5):1031-1042, 2003.
6. Ricardo Otazo, Daniel Kim, Leon Axel, and Daniel K. Sodickson. Combination of Compressed Sensing and Parallel Imaging for Highly Accelerated First-Pass Cardiac Perfusion MRI. Magnetic Resonance in Medicine, 64(3):767-776, 2010.
7. Ganesh Adluru, Suyash P. Awate, Tolga Tasdizen, Ross T. Whitaker, Edward V.R. DiBella. Temporally constrained reconstruction of dynamic cardiac perfusion MRI. Magnetic Resonance in Medicine, 57(6):1027-1036, 2007.
8. Li Feng, Monvadi B. Srichai, Ruth P. Lim, Alexis Harrison, Wilson King, Ganesh Adluru, Edward VR. Dibella, Daniel K. Sodickson, Ricardo Otazo, and Daniel Kim. Highly accelerated real-time cardiac cine MRI using k-t SPARSE-SENSE. Magnetic Resonance in Medicine, 70(1):64-74, 2013.
9. Michael Lustig, Juan M Santos, David L Donoho, and John Pauly. k-t SPARSE: High frame rate dynamic MRI exploiting spatio-temporal sparsity. In ISMRM 14th Annual Meeting, p. 2420, 2006.
10. Jo Schlemper, Jose Caballero, Joseph V Hajnal, Anthony N Price, and Daniel Rueckert. A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Transactions on Medical Imaging, 37(2):491-503, 2017.
11. Chen Qin, Jo Schlemper, Jose Caballero, Anthony N Price, Joseph V Hajnal, and Daniel Rueckert. Convolutional recurrent neural networks for dynamic MR image reconstruction. IEEE Transactions on Medical Imaging, 38(1):280-290, 2018.
12. Kerstin Hammernik, Matthias Schloegl, Rudolf Stollberger, and Thomas Pock. Dynamic Multicoil Reconstruction using Variational Networks. In ISMRM 27th Annual Meeting, p.4297, 2019.
13. Jo Schlemper, Seyed Sadegh Mohseni Salehi, Prantik Kundu, Carole Lazarus, Hadrien Dyvorne, Daniel Rueckert, Michal Sofka. Nonuniform Variational Network: Deep Learning for Accelerated Nonuniform MR Image Reconstruction. In Medical Image Computing and Computer Assisted Intervention - MICCAI, pp. 57-64, 2019.
14. Andreas Hauptmann, Simon Arridge, Felix Lucka, Vivek Muthurangu, and Jennifer A. Steeden. Real‐time cardiovascular MR with spatio‐temporal artifact suppression using deep learning-proof of concept in congenital heart disease. Magnetic Resonance in Medicine, 81:1143-1156, 2019.
15. Andreas Kofler, Marc Dewey, Tobias Schaeffter, Christian Wald, Christoph Kolbitsch. Spatio-Temporal Deep Learning-Based Undersampling Artefact Reduction for 2D Radial Cine MRI with Limited Training Data. In IEEE Transactions on Medical Imaging, 2019.
16. Kyong Hwan Jin, Harshit Gupta, Jerome Yerly, Matthias Stuber, and Michael Unser. Time-Dependent Deep Image Prior for Dynamic MRI. arXiv preprint arXiv:1910.01684, 2019.
17. Kerstin Hammernik, Teresa Klatzer, Erich Kobler, Michael P. Recht, Daniel K. Sodickson, Thomas Pock, and Florian Knoll. Learning a variational network for reconstruction of accelerated MRI data. Magnetic Resonance in Medicine, 79:3055-3071, 2018.
18. Stefan Wundrak, Jan Paul, Johannes Ulrici, Erich Hell, Margrit‐Ann Geibel, Peter Bernhardt, Wolfgang Rottbauer, Volker Rasche. Golden ratio sparse MRI using tiny golden angles. Magnetic Resonance in Medicine 75:2372-2378, 2016.
19. Hemant Kumar Aggarwal, Merry Mani, and Mathews Jacob. MoDL: Model-based deep learning architecture for inverse problems. IEEE Transactions on Medical Imaging, 38:394-405, 2017.
20. Stefan Roth, Michael J. Black. Fields of Experts: A Framework for Learning Image Priors. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 860-867, 2005.
21. Martin Uecker, Peng Lai, Mark J. Murphy, Patrick Virtue, Michael Elad, John M. Pauly, Shreyas S. Vasanawala, and Michael Lustig. ESPIRiT - an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA. Magnetic Resonance in Medicine, 71(3):990-1001, 2014.
22. Florian Knoll, Andreas Schwarzl, Clemens Diwoky, and Daniel K Sodickson. gpuNUFFT - An Open-Source GPU Library for 3D Gridding with Direct Matlab Interface. In ISMRM 23rd Annual Meeting, p.4297, 2014.
23. Matthias Schloegl, Martin Holler, Andreas Schwarzl, Kristian Bredies, and Rudolf Stollberger. Infimal convolution of total generalized variation functionals for dynamic MRI. Magnetic Resonance in Medicine, 78(1):142-155, 2017.