X-nuclei imaging like sodium MRI offers complementary information to 1H-based imaging. However, its clinical translation is hampered by the significant increase in scan time required for the acquisition of an additional nuclei. Addressing this challenge, this work introduces Multiplexed Measurement of Multiple Nuclei (M3N) sequences and proposes MERINA-MP2RAGE, a multi-nuclei sequence, that embeds sodium MRI in a 1H-MP2RAGE acquisition. The developed sequence was implemented on a 7T MRI and tested in phantom and human in vivo experiments. Merging 1H-MP2RAGE and 23Na-MERINA reduces the total scan time by 40% compared to sequential acquisitions while maintaining uncompromised image quality.
[1] Thulborn, K. R. (2018). Quantitative sodium MR imaging: a review of its evolving role in medicine. Neuroimage, 168, 250-268.
[2] Marques, J. P., Kober, T., Krueger, G., van der Zwaag, W., Van de Moortele, P. F., & Gruetter, R. (2010). MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. Neuroimage, 49(2), 1271-1281.
[3] Lee, S. W., Hilal, S. K., & Cho, Z. H. (1986). A multinuclear magnetic resonance imaging technique-simultaneous proton and sodium imaging. Magnetic resonance imaging, 4(4), 343-350.
[4] de Bruin, P. W., Koken, P., Versluis, M. J., Aussenhofer, S. A., Meulenbelt, I., Börnert, P., & Webb, A. G. (2015). Time-efficient interleaved human 23Na and 1H data acquisition at 7 T. NMR in Biomed, 28(10), 1228-1235.
[5] Meyerspeer, M., Magill, A. W., Kuehne, A., Gruetter, R., Moser, E., & Schmid, A. I. (2016). Simultaneous and interleaved acquisition of NMR signals from different nuclei with a clinical MRI scanner. Magn Reson Med, 76(5), 1636-1641.
[6] Blunck, Y., Josan, S., Taqdees, S. W., Moffat, B. A., Ordidge, R. J., Cleary, J. O., & Johnston, L. A. (2018). 3D-multi-echo radial imaging of 23Na (3D-MERINA) for time-efficient multi-parameter tissue compartment mapping. Magnetic resonance in medicine, 79(4), 1950-1961.
[7] Duan, Q., Duyn, J. H., Gudino, N., de Zwart, J. A., van Gelderen, P., Sodickson, D. K., & Brown, R. (2014). Characterization of a dielectric phantom for high‐field magnetic resonance imaging applications. Medical physics, 41(10), 102303.
[8] Boada, F. E., Gillen, J. S., Shen, G. X., Chang, S. Y., & Thulborn, K. R. (1997). Fast three dimensional sodium imaging. Magn Reson Med, 37(5), 706-715.
[9] Nagel, A. M., Laun, F. B., Weber, M. A., Matthies, C., Semmler, W., & Schad, L. R. (2009). Sodium MRI using a density-adapted 3D radial acquisition technique. Magn Reson Med, 62(6), 1565-1573.
[10] Riemer, F., Solanky, B. S., Stehning, C., Clemence, M., Wheeler-Kingshott, C. A., & Golay, X. (2014). Sodium (23 Na) ultra-short echo time imaging in the human brain using a 3D-Cones trajectory. Magnetic Resonance Materials in Physics, Biology and Medicine, 27(1), 35-46.
[11] Sun, H., Cleary, J. O., Glarin, R., Kolbe, S. C., Ordidge, R. J., Moffat, B. A., & Pike, G. B. (2019). Extracting more for less: multi‐echo MP2RAGE for simultaneous T1‐weighted imaging, T1 mapping, mapping, SWI, and QSM from a single acquisition. Magnetic resonance in medicine.