Xiaozhi Cao1,2,3, Congyu Liao2,3, Zijing Zhang2,4, Mary Kate Manhard2,3, Hongjian He1, Jianhui Zhong1, Berkin Bilgic2,3,5, and Kawin Setsompop2,3,5
1Center for Brain Imaging Science and Technology, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China, 2Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, charlestown, MA, United States, 3Department of Radiology, Harvard Medical School, charlestown, MA, United States, 4State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China, 5Harvard-MIT Department of Health Sciences and Technology, Cambridge, MA, United States
Synopsis
We proposed a motion-correction method for
joint reconstruction of blip-up/down EPI acquisition (BUDA-EPI) of brain
diffusion MRI. Motion parameters were estimated and incorporated into the joint
parallel imaging reconstruction of the blip-up/down multi-shot data, which included
B0 field maps and Hankel structured low-rank constraint. The proposed
motion-corrected reconstruction approach was demonstrated in vivo to provide
motion-robust reconstruction of blip-up/down multi-shot EPI diffusion data.
Introduction
Diffusion MRI (dMRI) is commonly used in
many clinical and neuroscientific studies. For fast dMRI, echo planar imaging
(EPI) is widely used, however geometric distortion due to field inhomogeneity
often degrades the image quality of EPI. To address this problem, FSL TOPUP1
is often used, where inverted phase-encodings, i.e blip-up and blip-down acquisitions
are acquired separately and used to estimate the field map and perform
distortion correction. Recently the BUDA-EPI approach2 was proposed,
which performs blip-up and blip-down acquisitions with complementary k-space
sampling (Figure 1A) along with joint parallel imaging reconstruction of these
two acquisitions to boost SNR and mitigate artifacts at high accelerations.
Motion artifacts pose a challenge in dMRI, as
acquisitions are typically long and across a large number of diffusion
directions3. In particular for BUDA-EPI, motion corruptions between
the blip-up and –down shots result in poor B0 map estimation and image
artifacts in the joint reconstruction (Figure 1C).
In this work, we introduce a
motion-correction approach for BUDA-EPI reconstruction to achieve motion-robust
distortion-free dMRI.Method
Figure 1B shows the flowchart of the BUDA-EPI
reconstruction approach. First, the blip-up EPI data and the blip-down EPI data
were separately reconstructed using SENSE4 to obtain two images that
were input to FSL TOPUP to estimate field maps. Along with the undersampled Fourier operator Ft and ESPIRiT5
sensitivity maps C, the estimated field maps Et were incorporated into the Hankel structured low-rank
constrained ($$$\parallel H(b)\parallel_{*}$$$)
joint reconstruction6-8 for both blip-up and -down data (dt), to obtain distortion-free
images xt (for tth shots).
To mitigate the motion artifacts shown
in Figure 1C, we proposed a motion-correction reconstruction framework as shown
in Figure 1D which utilizes the initial SENSE reconstructed images to estimate
motion parameters and the field map (E0),
as follows:
i.We assumed at the beginning
of scan, the first pair of blip-up/down shots were acquired without motion, and
regard this as our base reference position (POS0) from which a base
field-map E0 was estimated
using FSL TOPUP. (other blip-up/down pairs with no motion could also be used as
reference)
ii.The method shown in
Figure 2A was used to estimate the motion parameters of each EPI-shot separately
compared to the base position using FSL MCFLIRT9. By iteratively
using MCFLIRT incorporated with field-map (E0)
information, a more accurate motion estimation was obtained with the
distortion-corrected images.
iii.Motion parameters for each blip-up and each blip-down
acquisition relative to the reference position were then incorporated into the
motion transformation operator (Rt)
to jointly reconstruct each blip-up and blip-down acquisition pair, to obtain a
motion-corrected distortion-free image (Figure 1D).
The proposed method assumes that when
motion occurs, the underlying B0-field inhomogeneity would approximately rotate
with the motion. Figure 2B shows this to be a good approximation, where the
rotated field map mimics closely that of the reacquired actual field map.
To test our proposed motion correction
method, we designed static and dynamic experiments. For the static experiment,
the volunteers first were required to keep still, this was regarded as a static
reference. Then, the volunteers would move to another position and keep still during
acquisition of all blip-up shots, and then move to the next position while
acquiring the blip-down shots. For the dynamic experiment, the volunteers were asked
to move indiscriminately after about 1 minute from the start of scan.
All studies were performed on a 3 Tesla
MAGNETOM Prisma scanner with a 64-channel head receiver coil. For
high-resolution in-plane correction experiments, the data were collected using: FOV=198×198×120mm3, 0.8×0.8×5mm3 resolution, Rinplane=4,
partial-Fourier 6/8, TE/TR=67/3400ms, b-value=1000s/mm2 with 24
diffusion directions. For the isotropic 3D image correction experiments, imaging
parameters were: FOV=204×204×90mm3, 1.5mm isotropic resolution, Rinplane×MB=4x2,
partial-Fourier 6/8, TE/TR=55/3500ms. Results
The performance of the proposed method at
different motion levels was tested with the static experiment (as shown in
Figure 3). BUDA-EPI reconstruction without motion-correction exhibited
increasing levels of blurring and artifacts with increasing motion level (A to
C), while the proposed motion-corrected reconstruction produced high-quality
results in all cases, comparable to the reference images.
Figure 4 shows the result of the dynamic
experiment with high in-plane resolution and thick-slice, where 2D
motion-correction was utilized. Figure 4A shows the time-varying motion estimates,
with large translation and rotation up to +/-7mm and +/-15o. Corresponding
reconstructed images of 4 timeframes with/without motion-correction are
shown in Figure 4B respectively. Figure 4C shows the averaged DWI of the still
motion-free period (first minute of scan) and the moving period (from first minute
onward). The proposed method produced much improved averaged DWI, with some residual
image blurring in this extreme motion case, likely due to significant
spin-history related-artifacts.
Figure 5 shows the result of the static experiment
of images in three orthonormal planes with 1.5-mm isotropic resolution and 3D
motion-correction, with the estimated motion level shown at the top of the
figure. The proposed method presented similar image quality compared to
the reference images. Discussion and Conclusion
We proposed a motion-correction reconstruction method
for brain dMRI acquired with BUDA-EPI. In vivo results demonstrated the efficacy
of our proposed method. Future work includes refinement of the motion
estimation and incorporation of constrained reconstruction to mitigate the spin-history
issue, which will further improve the performance of our technique.Acknowledgements
No acknowledgement found.References
1.
Andersson JL, Skare S, Ashburner J. How to correct susceptibility distortions
in spin-echo echo-planar images: application to diffusion tensor imaging.
NeuroImage, 20(2), 870-888.
2.
Liao C, Cao X, Cho J, Zhang Z, Setsompop K, Bilgic B. Highly efficient MRI
through multi-shot echo planar imaging. Wavelets and Sparsity XVIII 11138, 2019.
3.
Brown TT, Kuperman JM, Erhart M, White NS, Roddey JC, Shankaranarayanan A, Han
ET, Rettmann D, Dale AM. Prospective motion correction of high-resolution
magnetic resonance imaging data in children. Neuroimage 2010;53(1):139-145.
4.
Pruessmann KP, Weiger M, Scheidegger MB,
Boesiger P. SENSE: sensitivity encoding for fast MRI. Magnetic Resonance
in Medicine, 1999; 42(5), 952-962.
5.
Uecker M, Lai P, Murphy MJ, Virtue P, Elad M, Pauly JM, et al. ESPIRiT--an
eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA.
Magn Reson Med. 2014;71(3):990-1001.
6.
Low-Rank Modeling of Local k-Space Neighborhoods (LORAKS) for Constrained MRI.
IEEE Transactions on Medical Imaging, 2014; 33(3): 668-681.
7.
Mani M, Jacob M, Kelley D, Magnotta V. Multi-shot sensitivity-encoded diffusion
data recovery using structured low-rank matrix completion (MUSSELS). Magn Reson
Med. 2017;78(2):494-507.
8.
Shin PJ, Larson PE, Ohliger MA, Elad M, Pauly JM, Vigneron DB, et al.
Calibrationless parallel imaging reconstruction based on structured low-rank
matrix completion. Magn Reson Med. 2014;72(4):959-70.
9.Jenkinson
M, Bannister P, Brady JM and Smith SM. Improved Optimisation for the Robust and
Accurate Linear Registration and Motion Correction of Brain Images. NeuroImage,
17(2), 825-841, 2002.