It has recently been recommended to utilize the minimum echo time for non-editing magnetic resonance spectroscopic experiments. Despite this intuitive recommendation there is no comprehensive and systematic investigation into the choice of echo time across numerous sequences. Here the impact of echo time on the Cramér-Rao lower bounds for 17 different metabolites across the six most commonly used pulse sequences are investigated using simulated spectral shapes, as well as a MEGA-sLASER sequence for GABA quantification. Recommendations are provided for the choice of echo time which will minimize the expected Cramér-Rao lower bound for all metabolites and sequences in question.
[1] R. A. de Graaf, In Vivo NMR Spectroscopy: Principles and Techniques. 1998.
[2] D. L. Rothman, O. A. C. Petroff, L. Kevin, and R. H. Mattson, “Localized 1H NMR measurements of y-aminobutyric acid in human brain in vivo,” Proc Natl Acad Sci USA, vol. 90, pp. 5662–5666, 1993.
[3] M. Wilson et al., “Methodological consensus on clinical proton MRS of the brain: Review and recommendations,” Magn Reson Med, pp. 1–24, 2019.
[4] S. Cavassila, S. Deval, C. Huegen, D. van Ormondt, and D. Graveron-Demilly, “Cramer-Rao Bound Expressions for Parametric Estimation of Overlapping Peaks: Influence of Prior Knowledge,” J Magn Reson, vol. 143, pp. 311–320, 2000.
[5] T. W. J. Scheenen, D. W. J. Klomp, J. P. Wijnen, and A. Heerschap, “Short echo time 1H-MRSI of the human brain at 3T with minimal chemical shift displacement errors using adiabatic refocusing pulses,” Magn Reson Med, vol. 59, no. 1, pp. 1–6, 2008.
[6] T. W. Scheenen, A. Heerschap, and D. W. Klomp, “Towards 1H-MRSI of the human brain at 7T with slice-selective adiabatic refocusing pulses.,” Magn Reson Mater Phy, vol. 21, no. 1–2, pp. 95–101, 2008.
[7] J. Frahm, K.-D. Merboldt, and W. Hänicke, “Localized Proton Spectroscopy using Stimulated Echoes,” J Magn Reson, vol. 72, no. 3, pp. 502–508, 1987.
[8] K. Landheer, K. M. Swanberg, and C. Juchem, “Magnetic Resonance Spectrum Simulator (MARSS), A Novel Software Package for Fast and Computationally Efficient Basis Set Simulation,” NMR Biomed, p. e4129, 2019.
[9] V. Mlynárik, G. Gambarota, H. Frenkel, and R. Gruetter, “Localized short-echo-time proton MR spectroscopy with full signal-intensity acquisition,” Magn Reson Med, vol. 56, no. 5, pp. 965–970, 2006.
[10] P. A. Bottomley, “Spatial Localization in NMR Spectroscopy in Vivo.,” Ann N Y Acad Sci, vol. 508, pp. 333–348, 1987.
[11] A. Andreychenko, D. W. J. Klomp, R. A. De Graaf, P. R. Luijten, and V. O. Boer, “In vivo GABA T2 determinaton with J-refocused echo time extension at 7 T,” NMR Biomed., vol. 26, no. 11, pp. 1596–1601, 2013.
[12] K. Landheer, R. F. Schulte, M. S. Treacy, K. M. Swanberg, and C. Juchem, “Theoretical description of modern 1H in Vivo magnetic resonance spectroscopic pulse sequences,” JMRI, p. [Epub ahead of print], 2019.
[13] C. S. Bolliger, C. Boesch, and R. Kreis, “On the use of Cramér-Rao minimum variance bounds for the design of magnetic resonance spectroscopy experiments.,” Neuroimage, vol. 83, pp. 1031–40, 2013.
[14] J. Pfeuffer, C. Juchem, H. Merkle, A. Nauerth, and N. K. Logothetis, “High-field localized 1H NMR spectroscopy in the anesthetized and in the awake monkey,” Magn Reson Imag, vol. 22, no. 10 SPEC. ISS., pp. 1361–1372, 2004.
[15] L. Xin, B. Schaller, V. Mlynarik, H. Lu, and R. Gruetter, “Proton T1 relaxation times of metabolites in human occipital white and gray matter at 7 T,” Magn Reson Med, vol. 69, pp. 931–936, 2013.
[16] C. Juchem, “INSPECTOR - Magnetic Resonance Spectroscopy Software,” http://juchem.bme.columbia.edu/software-and-tools.
[17] H. Prinsen, R. a de Graaf, G. F. Mason, D. Pelletier, and C. Juchem, “Reproducibility measurement of glutathione, GABA, and glutamate: Towards in vivo neurochemical profiling of multiple sclerosis with MR spectroscopy at 7T.,” J Magn Reson Imag, vol. 45, no. 1, pp. 187–198, Jan. 2017.
[18] A. Andreychenko, V. O. Boer, C. S. Arteaga de Castro, P. R. Luijten, and D. W. J. Klomp, “Efficient Spectral Editing at 7 T: GABA Detection with MEGA-sLASER.,” Magn Reson Med, vol. 68, no. 4, pp. 1018–1025, 2012.
[19] P. Mullins et al., “Current practice in the use of MEGA-PRESS spectroscopy for the detection of GABA,” Neuroimage, pp. 43–52, 2014.
[20] J. Knight-Scott, P. Brennan, S. Palasis, and X. Zhong, “Effect of Repetition Time on Metabolite Quantification in the Human Brain in 1H MR Spectroscopy at 3 Tesla,” J Magn Reson Imaging, vol. 45, pp. 710–721, 2017.
[21] V. Mlynarik, S. Gruber, and E. Moser, “Proton T1 and T2 relaxation times of human brain metabolites at 3 Tesla,” NMR Biomed., vol. 14, no. 5, pp. 325–331, 2001.
[22] N. A. J. Puts, P. B. Barker, and R. A. E. Edden, “Measuring the longitudinal relaxation time of GABA in vivo at 3T,” vol. 85, no. 0 1, pp. 1–27, 2015.
[23] K. Landheer, A. Sahgal, S. Myrehaug, A. P. Chen, C. H. Cunningham, and S. J. Graham, “A rapid inversion technique for the measurement of longitudinal relaxation times of brain metabolites: application to lactate in high-grade gliomas at 3 T.,” NMR Biomed., vol. 29, pp. 1381–1390, Jul. 2016.
[24] P. O. Wyss et al., “In Vivo Estimation of Transverse Relaxation Time Constant (T2) of 17 Human Brain Metabolites at 3T,” Magn Reson Med, vol. 80, pp. 452–461, 2018.