An implementation of a transverse isotropic model with fiber directions defined by DTI was added to our finite element model-based nonlinear inversion MRE platform. The algorithm can recover accurate images of complex valued shear modulus, shear anisotropy, and tensile anisotropy from a realistic brain simulation. In vivo application to multi-excitation brain MRE data produced promising results, maintaining high quality images for the base shear modulus and damping ratio, while recovering additional images of anisotropy which may be useful for characterizing diseases affecting white matter tracts or muscle.
[1] Kennedy, P., Wagner, M., Castéra, L., Hong, C.W., Johnson, C.L., Sirlin, C.B. and Taouli, B., 2018. Quantitative elastography methods in liver disease: current evidence and future directions. Radiology, 286(3), pp.738-763.
[2] Hiscox, L.V., Johnson, C.L., Barnhill, E., McGarry, M.D., Huston 3rd, J., Van Beek, E.J., Starr, J.M. and Roberts, N., 2016. Magnetic resonance elastography (MRE) of the human brain: technique, findings and clinical applications. Physics in Medicine & Biology, 61(24), p.R401.
[3] Johnson, C.L., Schwarb, H., DJ McGarry, M., Anderson, A.T., Huesmann, G.R., Sutton, B.P. and Cohen, N.J., 2016. Viscoelasticity of subcortical gray matter structures. Human brain mapping, 37(12), pp.4221-4233.
[4] McGarry, M.D.J., Van Houten, E.E.W., Johnson, C.L., Georgiadis, J.G., Sutton, B.P., Weaver, J.B. and Paulsen, K.D., 2012. Multiresolution MR elastography using nonlinear inversion. Medical physics, 39(10), pp.6388-6396.
[5] Anderson, A.T., Van Houten, E.E., McGarry, M.D., Paulsen, K.D., Holtrop, J.L., Sutton, B.P., Georgiadis, J.G. and Johnson, C.L., 2016. Observation of direction-dependent mechanical properties in the human brain with multi-excitation MR elastography. Journal of the mechanical behavior of biomedical materials, 59, pp.538-546.
[6] Sinkus, R., Tanter, M., Catheline, S., Lorenzen, J., Kuhl, C., Sondermann, E. and Fink, M., 2005. Imaging anisotropic and viscous properties of breast tissue by magnetic resonance‐elastography. Magnetic Resonance in Medicine, 53(2), pp.372-387.
[7] Qin, E.C., Sinkus, R., Geng, G., Cheng, S., Green, M., Rae, C.D. and Bilston, L.E., 2013. Combining MR elastography and diffusion tensor imaging for the assessment of anisotropic mechanical propert ies: a phantom study. Journal of Magnetic Resonance Imaging, 37(1), pp.217-226.
[8] Romano, A., Scheel, M., Hirsch, S., Braun, J. and Sack, I., 2012. In vivo waveguide elastography of white matter tracts in the human brain. Magnetic resonance in medicine, 68(5), pp.1410-1422.
[9] Namani, R., Wood, M.D., Sakiyama-Elbert, S.E. and Bayly, P.V., 2009. Anisotropic mechanical properties of magnetically aligned fibrin gels measured by magnetic resonance elastography. Journal of biomechanics, 42(13), pp.2047-2053.
[10] Guo, J., Hirsch, S., Scheel, M., Braun, J. and Sack, I., 2016. Three‐parameter shear wave inversion in MR elastography of incompressible transverse isotropic media: Application to in vivo lower leg muscles. Magnetic resonance in medicine, 75(4), pp.1537-1545.
[11] Tweten, D.J., Okamoto, R.J., Schmidt, J.L., Garbow, J.R. and Bayly, P.V., 2015. Estimation of material parameters from slow and fast shear waves in an incompressible, transversely isotropic material. Journal of biomechanics, 48(15), pp.4002-4009.
[12] Tweten, D.J., Okamoto, R.J. and Bayly, P.V., 2017. Requirements for accurate estimation of anisotropic material parameters by magnetic resonance elastography: a computational study. Magnetic resonance in medicine, 78(6), pp.2360-2372.
[13] CL Johnson, JL Holtrop, AT Anderson, BP Sutton, “Brain MR Elastography with Multiband Excitation and Nonlinear Motion-Induced Phase Error Correction,” 24th Annual Meeting of the International Society for Magnetic Resonance in Medicine, Singapore, May 7-13, 2016, p. 1951.