Exogenous & Endogenous Contrasts
Kannie WY Chan1

1City University of Hong Kong; Johns Hopkins Medicine

Synopsis

Imaging proton exchange generates contrast for many biomedical applications. Chemical Exchange Saturation Transfer (CEST) MRI is one of those contrast mechanisms that enables us to sensitively reveal unique molecular information in vivo. This talk will discuss the recent developments in CEST contrast characterizations and its applications. It will be divided into two parts, first part is the endogenous and exogenous molecules that can be detected via CEST, and second part is the preclinical CEST applications in diagnosis and therapy.

Target audience

Researchers/clinicians who are interested in studying proton exchange in vivo using CEST.

Syllabus

CEST is characterized by z-spectrum, which contains signals from both positive and negative offset frequencies from water (1-4). It provides ample information about the exchangeable protons, such as Amide Proton Transfer (APT) (4-7), Nuclear Overhauser Enhancement (NOE) (8-10), Magnetization Transfer (MT) (11,12) and metabolites (13-31). Endogenous CEST contrast has been applied to study brain tumor in both preclinical and clinical settings. It has also been investigated to highlight tumor in other parts of the body and pathology in neurodegenerative diseases. Exogenous CEST contrast includes the applications of biomaterials, such as natural glucose, drugs and polymers to indicate abnormalities, guide treatments and monitor therapeutic outcomes.

APT has shown promises in differentiating tumor recurrence from radiation necrosis (4-7,32). Imaging pH and metabolites could indicate disease status, e.g. using glucoCEST, gluCEST, and CrCEST (13-25,28-31). In addition to the CEST map, dynamic imaging approach has been applied to study glucose uptake and perfusion-related parameters in brain tumors (13,16,17,33). Moreover, new analysis approaches have been developed in an attempt to specify the actual signal contributions, with reference to the conventional analysis of the Z-spectrum using MTRasym. This talk will present recent developments in CEST contrast characterization, and applications of endogenous and exogenous CEST contrast in diagnosis and therapy.

Acknowledgements


References

1. Aime S, et al. Acc Chem Res 2009;42(7):822-831. 2. Sherry AD, et al. Annu Rev Biomed Eng 2008;10:391-411. 3. Ward KM, et al. J Magn Reson 2000;143(1):79-87. 4. Zhou J, et al. Magn Reson Med 2004;51(5):945-952. 5. Heo HY, et al. J Magn Reson Imaging 2016;44(1):41-50. 6. Zhou J, et al. Nat Med 2003;9(8):1085-1090. 7. Zhou J, et al. Nat Med 2011;17(1):130-134. 8. Zhang S, et al. Magn Reson Med 2018;79(5):2731-2737. 9. Jones CK, et al. Neuroimage 2013;77:114-124. 10. Lu J, et al. Magn Reson Med 2015;73(4):1615-1622. 11. van Zijl PC, et al. Magn Reson Med 2011;65(4):927-948. 12. van Zijl PCM, et al. Neuroimage 2018;168:222-241. 13. Chan KW, et al. Magn Reson Med 2012;68(6):1764-1773. 14. Nasrallah FA, et al. J Cereb Blood Flow Metab 2013. 15. Walker-Samuel S, et al. Nat Med 2013;19(8):1067-1072. 16. Xu X, et al. Magn Reson Med 2015;74(6):1556-1563. 17. Xu X, Yet al. Tomography 2015;1(2):105-114. 18. Cai K, et al. Nat Med 2012;18(2):302-306. 19. Cai K, et al. NMR Biomed 2013;26(10):1278-1284. 20. Haris M, et al. NMR Biomed 2013;26(4):386-391. 21. Kogan F, et al. Neuroimage 2013;77:262-267. 22. Crescenzi R, et al. Neuroimage 2014;101:185-192. 23. Bagga P, et al. J Neurochem 2016;139(3):432-439. 24. Roalf DR, et al. Mol Psychiatry 2017;22(9):1298-1305. 25. Wang R, et al. J Alzheimers Dis 2017;57(4):1041-1048. 26. Bagga P, et al. Sci Rep 2018;8(1):2883. 27. Kogan F, et al. NMR Biomed 2017;30(1). 28. Cai K, et al. Mol Imaging Biol 2017;19(2):225-232. 29. Haris M, et al. NMR Biomed 2012;25(11):1305-1309. 30. Kogan F, et al. Magn Reson Med 2014;71(1):164-172. 31. Chen L, et al. NMR Biomed 2017;30(12). 32. Mehrabian H, et al. Clin Cancer Res 2017;23(14):3667-3675. 33. Xu X, et al. Magn Reson Med 2019.
Proc. Intl. Soc. Mag. Reson. Med. 27 (2019)