A calibrated series of MRS phantoms is used to compare the performance of common spectroscopy analysis tools in the quantification of GABA-edited spectroscopy data. Varied GABA concentration, and simulated spectra provide a ground truth with which to compare.
[1] D. A. McCormick, “GABA as an inhibitory neurotransmitter in humancerebral cortex,” Journal of Neurophysiology, vol. 62, pp. 1018–1027,nov 1989.
[2] T. Hashimoto, D. W. Volk, S. M. Eggan, K. Mirnics, J. N. Pierri, Z. Sun,A. R. Sampson, and D. A. Lewis, “Gene Expression Deficits in a Subclassof GABA Neurons in the Prefrontal Cortex of Subjects with Schizophre-nia,” The Journal of Neuroscience, vol. 23, pp. 6315–6326, jul 2003.
[3] M. D. Simpson, P. Slater, J. F. Deakin, M. C. Royston, and W. J. Skan,“Reduced GABA uptake sites in the temporal lobe in schizophrenia,”Neuroscience Letters, vol. 107, pp. 211–215, dec 1989.
[4] S. Baulac, G. Huberfeld, I. Gourfinkel-An, G. Mitropoulou, A. Beranger,J. F. Prud’homme, M. Baulac, A. Brice, R. Bruzzone, and E. LeGuern,“First genetic evidence of GABAAreceptor dysfunction in epilepsy: Amutation in the γ2-subunit gene,” Nature Genetics, vol. 28, pp. 46–48,may 2001.
[5] A. R. Brooks-Kayal, M. D. Shumate, H. Jin, T. Y. Rikhter, and D. A.Coulter, “Selective changes in single cell GABA(A) receptor subunitexpression and function in temporal lobe epilepsy.,” Nature medicine,vol. 4, pp. 1166–1172, oct 1998.1
[6] N. Soltani, H. Qiu, M. Aleksic, Y. Glinka, F. Zhao, R. Liu, Y. Li,N. Zhang, R. Chakrabarti, T. Ng, T. Jin, H. Zhang, W.-Y. Lu, Z.-P.Feng, G. J. Prud’homme, and Q. Wang, “GABA exerts protective andregenerative effects on islet beta cells and reverses diabetes,” Proceedingsof the National Academy of Sciences, vol. 108, no. 28, pp. 11692–11697,2011.
[7] M. K. Brix, L. Ersland, K. Hugdahl, R. Gr ̈ uner, M.-B. Posserud, ̊ A. Hammar, A. R. Craven, R. Noeske, C. J. Evans, H. B. Walker,T. Midtvedt, and M. K. Beyer, “Brain MR spectroscopy in autism spec-trum disorderthe GABA excitatory/inhibitory imbalance theory revis-ited,” Frontiers in Human Neuroscience, vol. 9, no. June, pp. 1–12,2015.
[8] R. B. Lydiard, “The role of GABA in anxiety disorders,” 2003.
[9] C. E. Robertson, E. M. Ratai, and N. Kanwisher, “Reduced GABAergicAction in the Autistic Brain,” Current Biology, vol. 26, pp. 80–85, jan2016.
[10] G. Sanacora, G. F. Mason, D. L. Rothman, K. L. Behar, F. Hyder, O. A.Petroff, R. M. Berman, D. S. Charney, and J. H. Krystal, “Reduced cor-tical γ-aminobutyric acid levels in depressed patients determined by pro-ton magnetic resonance spectroscopy,” Archives of General Psychiatry,vol. 56, pp. 1043–1047, nov 1999.
[11] M. Mescher, H. Merkle, J. Kirsch, M. Garwood, and R. Gruetter, “Si-multaneous in vivo spectral editing and water suppression,” NMR inBiomedicine, vol. 11, no. 6, pp. 266–272, 1998.
[12] G. Reynolds, M. Wilson, A. Peet, and T. N. Arvanitis, “An algorithmfor the automated quantitation of metabolites in in vitro NMR signals,”Magnetic Resonance in Medicine, vol. 56, no. 6, pp. 1211–1219, 2006.
[13] M. Wilson, G. Reynolds, R. A. Kauppinen, T. N. Arvanitis, and A. C.Peet, “A constrained least-squares approach to the automated quanti-tation of in vivo 1 H magnetic resonance spectroscopy data,” MagneticResonance in Medicine, vol. 65, pp. 1–12, jan 2011.
[14] A. Naressi, C. Couturier, J. M. Devos, M. Janssen, C. Mangeat, R. DeBeer, and D. Graveron-Demilly, “Java-based graphical user interfacefor the MRUI quantitation package,” Magnetic Resonance Materials inPhysics, Biology and Medicine, vol. 12, no. 2-3, pp. 141–152, 2001.2
[15] D. Stefan, F. D. Cesare, A. Andrasescu, E. Popa, A. Lazariev,E. Vescovo, O. Strbak, S. Williams, Z. Starˇcuk, M. Cabanas, D. Van Or-mondt, and D. Graveron-Demilly, “Quantitation of magnetic resonancespectroscopy signals: The jMRUI software package,” Measurement Sci-ence and Technology, vol. 20, no. 10, 2009.
[16] S. W. Provencher, “Estimation of metabolite concentrations from local-ized in vivo proton NMR spectra,” Magnetic Resonance in Medicine,vol. 30, pp. 672–679, dec 1993.
[17] S. W. Provencher, “Automatic quantitation of localized in vivo1H spec-tra with LCModel,” NMR in Biomedicine, vol. 14, pp. 260–264, jun2001.
[18] B. Soher, D. Semanchuk, D. Todd, J. Steinberg, and K. Young, “VeSPA:Integrated applications for RF pulse design, spectral simulation andMRS data analysis,” Proceedings of the 19th Annual Meeting ISMRM,vol. 19, no. 19, p. 1410, 2011.
[19] R. Edden, N. A. J. Puts, A. D. Harris, P. B. Barker, and C. J.Evans, “Gannet: A batch-processing tool for the quantitative analysisof gamma-aminobutyric acid-edited MR spectroscopy spectra,” Journalof Magnetic Resonance Imaging, vol. 40, no. 6, 2014.
[20] R. Simpson, G. A. Devenyi, P. Jezzard, T. J. Hennessy, and J. Near,“Advanced Processing and Simulation of MRS Data Using the FID Ap-pliance ( FID-A ) An Open Source , MATLAB-Based Toolkit,” MagneticResonance in Medicine, vol. 33, pp. 23–33, jan 2017.
Fig.1: Reported GABA/NAA concentration ratios and linear fits for different tools for a series of liquid metabolite solutions with fixed concentration of NAA (15mM) and CR (8mM) and increasing concentrations of GABA (0--11.6mM). A slope greater than 1 indicates systematic overestimation for Tarquin, while a slope less than 1 indicates underestimation, which appears to be dominant for all other tools. All tools achieve reasonable quality-of-fit with $r^2$ values ranging from 0.93 (Gannet) to 0.99 (LCM).