This talk will review and explain effects in dielectric materials relevant to MRI. It will cover effects due to the body tissues properties, tailoring of the RF field using high permittivity dielectric materials as well as resonant structure implementations. Applications of dielectrics for MRI in a range of magnetic fields will be shown.
1. Jin, Jianming. Electromagnetic analysis and design in magnetic resonance imaging. Vol. 1. CRC press, 1998.
2. Webb, A. G. (2011). Dielectric materials in magnetic resonance. Concepts in magnetic resonance part A, 38(4), 148-184.
3. Gabriel, S., Lau, R. W., & Gabriel, C. (1996). The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Physics in medicine & biology, 41(11), 2251.
4. Collins, C. M., Liu, W., Schreiber, W., Yang, Q. X., & Smith, M. B. (2005). Central brightening due to constructive interference with, without, and despite dielectric resonance. Journal of Magnetic Resonance Imaging, 21(2), 192-196.
5. Collins, C. M. (2006). Radiofrequency field calculations for high field MRI. In Ultra high field magnetic resonance imaging(pp. 209-248). Springer, Boston, MA.
6. Chang, K. J., Kamel, I. R., Macura, K. J., & Bluemke, D. A. (2008). 3.0-T MR imaging of the abdomen: comparison with 1.5 T. Radiographics, 28(7), 1983-1998.
7. Vaughan, J. T., Garwood, M., Collins, C. M., Liu, W., DelaBarre, L., Adriany, G., ... & Ugurbil, K. (2001). 7T vs. 4T: RF power, homogeneity, and signal‐to‐noise comparison in head images. Magnetic resonance in medicine, 46(1), 24-30.
8. Yang, Q. X., Mao, W., Wang, J., Smith, M. B., Lei, H., Zhang, X., ... & Chen, W. (2006). Manipulation of image intensity distribution at 7.0 T: passive RF shimming and focusing with dielectric materials. Journal of magnetic resonance imaging, 24(1), 197-202.
9. De Heer, P., Brink, W. M., Kooij, B. J., & Webb, A. G. (2012). Increasing signal homogeneity and image quality in abdominal imaging at 3 T with very high permittivity materials. Magnetic resonance in medicine, 68(4), 1317-1324.
10. Yang, Q. X., Wang, J., Wang, J., Collins, C. M., Wang, C., & Smith, M. B. (2011). Reducing SAR and enhancing cerebral signal‐to‐noise ratio with high permittivity padding at 3 T. Magnetic resonance in medicine, 65(2), 358-362.
11. Brink, W. M., van der Jagt, A. M., Versluis, M. J., Verbist, B. M., & Webb, A. G. (2014). High permittivity dielectric pads improve high spatial resolution magnetic resonance imaging of the inner ear at 7 T. Investigative radiology, 49(5), 271-277.
12. Vaidya, M. V., Lazar, M., Deniz, C. M., Haemer, G. G., Chen, G., Bruno, M., ... & Collins, C. M. Improved detection of fMRI activation in the cerebellum at 7T with dielectric pads extending the imaging region of a commercial head coil. Journal of Magnetic Resonance Imaging.
13. Vu, A. T., Auerbach, E., Lenglet, C., Moeller, S., Sotiropoulos, S. N., Jbabdi, S., ... & Ugurbil, K. (2015). High resolution whole brain diffusion imaging at 7 T for the Human Connectome Project. Neuroimage, 122, 318-331.
14. Kajfez, D., & Guillon, P. (1986). Dielectric resonators. Norwood, MA, Artech House, Inc., 1986, 547 p. No individual items are abstracted in this volume.
15. Aussenhofer, S. A., & Webb, A. G. (2012). Design and evaluation of a detunable water‐based quadrature HEM11 mode dielectric resonator as a new type of volume coil for high field MRI. Magnetic resonance in medicine, 68(4), 1325-1331.
16. Brink, W. M., Remis, R. F., & Webb, A. G. (2016). A theoretical approach based on electromagnetic scattering for analysing dielectric shimming in high‐field MRI. Magnetic resonance in medicine, 75(5), 2185-2194.
17. Van Gemert, J., Brink, W., Webb, A., & Remis, R. (2017). An efficient methodology for the analysis of dielectric shimming materials in magnetic resonance imaging. IEEE transactions on medical imaging, 36(2), 666-673.
18. O'brien, K. R., Magill, A. W., Delacoste, J., Marques, J. P., Kober, T., Fautz, H. P., ... & Krueger, G. (2014). Dielectric pads and low‐B1+ adiabatic pulses: Complementary techniques to optimize structural T1w whole‐brain MP2RAGE scans at 7 tesla. Journal of Magnetic Resonance Imaging, 40(4), 804-812.
19. Teeuwisse, W. M., Brink, W. M., Haines, K. N., & Webb, A. G. (2012). Simulations of high permittivity materials for 7 T neuroimaging and evaluation of a new barium titanate‐based dielectric. Magnetic resonance in medicine, 67(4), 912-918.
20. Snaar, J. E. M., Teeuwisse, W. M., Versluis, M. J., van Buchem, M. A., Kan, H. E., Smith, N. B., & Webb, A. G. (2011). Improvements in high‐field localized MRS of the medial temporal lobe in humans using new deformable high‐dielectric materials. NMR in Biomedicine, 24(7), 873-879.
21. Luo, W., Lanagan, M. T., Sica, C. T., Ryu, Y., Oh, S., Ketterman, M., ... & Collins, C. M. (2013). Permittivity and performance of dielectric pads with sintered ceramic beads in MRI: early experiments and simulations at 3 T. Magnetic resonance in medicine, 70(1), 269-275.
22. O’Reilly, T. P. A., Webb, A. G., & Brink, W. M. (2016). Practical improvements in the design of high permittivity pads for dielectric shimming in neuroimaging at 7 T. Journal of Magnetic Resonance, 270, 108-114.
23. Neves, A. L., Leroi, L., Raolison, Z., Cochinaire, N., Letertre, T., Abdeddaim, R., ... & Malléjac, N. (2018). Compressed perovskite aqueous mixtures near their phase transitions show very high permittivities: New prospects for high‐field MRI dielectric shimming. Magnetic resonance in medicine, 79(3), 1753-1765.
24. Lee, B. Y., Zhu, X. H., Rupprecht, S., Lanagan, M. T., Yang, Q. X., & Chen, W. (2017). Large improvement of RF transmission efficiency and reception sensitivity for human in vivo 31P MRS imaging using ultrahigh dielectric constant materials at 7 T. Magnetic resonance imaging, 42, 158-163.
25. Rupprecht, S., Lee, B. Y., Zhu, X. H., Chen, W., & Yang, Q. X. (2014). Signal-to-Noise Ratio Improvement for MR Proton Spectroscopy at 3T Using a Ultra-high Dielectric Constant (uHDC) Material Sleeve. Proceedings of the International Society for Magnetic Resonance in Medicine, Milan, Italy, 0403.
26. Vaidya, M. V., Sodickson, D. K., Collins, C. M., & Lattanzi, R. (2014, May). Extending the Sensitivity of a Transmit/Receive Radiofrequency Coil with Dielectric Materials at 7 T. In Proc. Intl. Soc. Mag. Reson. Med (Vol. 22, p. 0406).
27. Webb, A. G. (2012). Visualization and characterization of pure and coupled modes in water-based dielectric resonators on a human 7T scanner. Journal of Magnetic Resonance, 216, 107-113.
28. Schmidt, R., & Webb, A. (2016). Characterization of an HEM-Mode Dielectric Resonator for 7-T human phosphorous magnetic resonance imaging. IEEE Transactions on Biomedical Engineering, 63(11), 2390-2395.
29. Aussenhofer, S. A., & Webb, A. G. (2014). An eight-channel transmit/receive array of TE01 mode high permittivity ceramic resonators for human imaging at 7 T. Journal of Magnetic Resonance, 243, 122-129.
30. O'Reilly, T., Ruytenberg, T., & Webb, A. G. (2018). Modular transmit/receive arrays using very‐high permittivity dielectric resonator antennas. Magnetic resonance in medicine, 79(3), 1781-1788.
31. Lagore R. L., DelaBarre L., Yang Q. X., Lanagan M., Eryaman Y., Rupprecht S., Luo W., Lee B.-Y., Zhu X.-H. , Ugurbil K. , Chen W., and Adriany G. High dielectric constant (HDC) disk dipoles for 10.5T imaging. Proc. Intl. Soc. Mag. Reson. Med. 25 (2017), 1128.
32. Schaller, B., Xin, L., O'brien, K., Magill, A. W., & Gruetter, R. (2014). Are glutamate and lactate increases ubiquitous to physiological activation? A 1H functional MR spectroscopy study during motor activation in human brain at 7 Tesla. Neuroimage, 93, 138-145.
33. Brink, W. M., van den Brink, J. S., & Webb, A. G. (2015). The effect of high-permittivity pads on specific absorption rate in radiofrequency-shimmed dual-transmit cardiovascular magnetic resonance at 3T. Journal of Cardiovascular Magnetic Resonance, 17(1), 82.
34. Rupprecht, S., Sica, C. T., Chen, W., Lanagan, M. T., & Yang, Q. X. (2018). Improvements of transmit efficiency and receive sensitivity with ultrahigh dielectric constant (uHDC) ceramics at 1.5 T and 3 T. Magnetic resonance in medicine, 79(5), 2842-2851.
35. Kordzadeh, A., & De Zanche, N. (2018). Optimal-permittivity Dielectric Liners for a 4.7 T Transceiver Array. Magnetic resonance imaging, 48, 89-95.
36. Vaidya, M. V., Deniz, C. M., Collins, C. M., Sodickson, D. K., & Lattanzi, R. (2017). Manipulating transmit and receive sensitivities of radiofrequency surface coils using shielded and unshielded high-permittivity materials. Magnetic Resonance Materials in Physics, Biology and Medicine, 1-12.
37. Bluemink, J. J., Raaijmakers, A. J., Koning, W., Andreychenko, A., Rivera, D. S., Luijten, P. R., ... & van den Berg, C. A. (2016). Dielectric waveguides for ultrahigh field magnetic resonance imaging. Magnetic resonance in medicine, 76(4), 1314-1324.
38. Koning, W., Bluemink, J. J., Langenhuizen, E. A. J., Raaijmakers, A. J., Andreychenko, A., den Berg, C. A. T., ... & Klomp, D. W. (2013). High‐resolution MRI of the carotid arteries using a leaky waveguide transmitter and a high‐density receive array at 7 T. Magnetic resonance in medicine, 69(4), 1186-1193.
39. Aussenhofer, S. A., & Webb, A. G. (2013). High‐permittivity solid ceramic resonators for high‐field human MRI. NMR in Biomedicine, 26(11), 1555-1561.
40. Schmidt, R., & Webb, A. (2016). Improvements in RF Shimming in High Field MRI Using High Permittivity Materials With Low Order Pre-Fractal Geometries. IEEE transactions on medical imaging, 35(8), 1837-1844.
41. Ruytenberg, T., & Webb, A. G. (2017). Design of a dielectric resonator receive array at 7 Tesla using detunable ceramic resonators. Journal of Magnetic Resonance, 284, 94-98.
42. Schmidt, R., Teeuwisse, W., & Webb, A. (2017). Quadrature operation of segmented dielectric resonators facilitated with metallic connectors. Magnetic resonance in medicine, 77(6), 2431-2437.
43. Koolstra, K., Börnert, P., Brink, W., & Webb, A. (2018). Improved image quality and reduced power deposition in the spine at 3 T using extremely high permittivity materials. Magnetic resonance in medicine, 79(2), 1192-1199.
44. Slobozhanyuk, A. P., Poddubny, A. N., Raaijmakers, A. J., van den Berg, C. A., Kozachenko, A. V., Dubrovina, I. A., ... & Belov, P. A. (2016). Enhancement of magnetic resonance imaging with metasurfaces. Advanced materials, 28(9), 1832-1838.
45. Schmidt, R., Slobozhanyuk, A., Belov, P., & Webb, A. (2017). Flexible and compact hybrid metasurfaces for enhanced ultra high field in vivo magnetic resonance imaging. Scientific reports, 7(1), 1678.