The difference between the baseline ipsilesional and contralesional mean values in the internal capsule from Orientation Dispersion Index and Generalized Fractional Anisotropy correlate strongly with upper extremity clinical outcomes at 6 weeks. These models account for regions of crossing fibers and demonstrate improvements over DTI in using brain microstructure to make clinical judgments.
[1] C. Doughty, J. Wang, W. Feng, D. Hackney, E. Pani, and G. Schlaug, “Detection and Predictive Value of Fractional Anisotropy Changes of the Corticospinal Tract in the Acute Phase of a Stroke,” Stroke, vol. 47, no. 6, pp. 1520–1526, May 2016. [2] J. Puig, S. Pedraza, G. Blasco, J. Daunis-i-Estadella, F. Prados, S. Remollo, A. Prats-Galino, G. Soria, I. Boada, M. Castellanos and J. Serena, "Acute Damage to the Posterior Limb of the Internal Capsule on Diffusion Tensor Tractography as an Early Imaging Predictor of Motor Outcome after Stroke", American Journal of Neuroradiology, vol. 32, no. 5, pp. 857-863, 2011. [3] C. Stinear, P. Barber, M. Petoe, S. Anwar and W. Byblow, "The PREP algorithm predicts potential for upper limb recovery after stroke", Brain, vol. 135, no. 8, pp. 2527-2535, 2012. [4] G. Adluru, Y. Gur, J.S. Anderson, L.G. Richards, N. Adluru, E.V.R. DiBella, Assessment of white matter microstructure in stroke patients using NODDI, in: Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE, 2014, pp. 742-745. [5] H. Zhang, T. Schneider, C. Wheeler-Kingshott and D. Alexander, "NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain", NeuroImage, vol. 61, no. 4, pp. 1000-1016, 2012. [6] S. Moeller, E. Yacoub, C.A. Olman, E. Auerbach, J. Strupp, N. Harel, K. Ugurbil, Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI, Magnetic Resonance in Medicine, 63 (2010) 1144-1153. [7] K. Setsompop, B.A. Gagoski, J.R. Polimeni, T. Witzel, V.J. Wedeen, L.L. Wald, Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty, Magnetic Resonance in Medicine, 67 (2012) 1210-1224. [8] B. Bilgic, I. Chatnuntawech, A.P. Fan, K. Setsompop, S.F. Cauley, L.L. Wald, E. Adalsteinsson, Fast image reconstruction with L2-regularization, Journal of Magnetic Resonance Imaging, 40 (2014) 181-191. [9] L.-W. Kuo, J.-H. Chen, V.J. Wedeen, W.-Y.I. Tseng, Optimization of diffusion spectrum imaging and q-ball imaging on clinical MRI system, NeuroImage, 41 (2008) 7-18. [13]S.M. Smith. Fast robust automated brain extraction. Human Brain Mapping, 17(3):143-155, November 2002. [10] Veraart J et al. (2016)] "Diffusion MRI noise mapping using random matrix theory", Magnetic Resonance in Medicine, in press, DOI: 10.1002/mrm.26059 [11] University Medical Center Freiburg, Dering software license. https://www.uniklinik-freiburg.de/roentgen-en.html [12] Jesper L. R. Andersson and Stamatios N. Sotiropoulos. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. NeuroImage, 125:1063-1078, 2016. [13] Jesper L. R. Andersson, Mark S. Graham, Eniko Zsoldos and Stamatios N. Sotiropoulos. Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images. NeuroImage, 141:556-572, 2016. [14] P. A. Cook, Y. Bai, S. Nedjati-Gilani, K. K. Seunarine, M. G. Hall, G. J. Parker, D. C. Alexander, Camino: Open-Source Diffusion-MRI Reconstruction and Processing, 14th Scientific Meeting of the International Society for Magnetic Resonance in Medicine, Seattle, WA, USA, p. 2759, May 2006. [15] Garyfallidis E, Brett M, Amirbekian B, Rokem A, van der Walt S, Descoteaux M, Nimmo-Smith I and Dipy Contributors (2014). Dipy, a library for the analysis of diffusion MRI data. Frontiers in Neuroinformatics, vol.8, no.8. [16] Yeh F-C, Wedeen VJ, Tseng WY (2010), “Generalized Q-Sampling Imaging”, IEEE Trans. Med. Imaging. [17] Johns Hopkins University DTI-based white-matter atlas. https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases; [18] Advance Normalization Tools (ANTs). https://sourceforge.net/projects/advants/ [19] C. Granziera, A. Daducci, D. Meskaldji, A. Roche, P. Maeder, P. Michel, N. Hadjikhani, A. Sorensen, R. Frackowiak, J. Thiran, R. Meuli and G. Krueger, "A new early and automated MRI-based predictor of motor improvement after stroke", Neurology, vol. 79, no. 1, pp. 39-46, 2012. [20] J. D. Schaechter, Z. P. Fricker, K. L. Perdue, K. G. Helmer, M. G. Vangel, D. N. Greve, and N. Makris, “Microstructural status of ipsilesional and contralesional corticospinal tract correlates with motor skill in chronic stroke patients,” Human Brain Mapping, vol. 30, no. 11, pp. 3461–3474, 2009.
Figure 1-The preprocessing steps to remove artifacts and
noise are the same for the DSI and DTI pipelines until after the DeEddy step.
From there the data is split into shells for the DTI model fitting or used
directly for GFA and NODDI model fitting. The NODDI model consists of
three parameter maps: Cerebrospinal Fluid (CSF), Restricted Diffusion Index
(RDI) and Orientation Dispersion Index (ODI) which are all scaled between 0 and
1.