Mauro Zucchelli^{1}, Maxime Descoteaux^{2}, and Gloria Menegaz^{1}

Diffusion MRI can be used to estimate the brain tissue neurite density from Multi-Compartment models. This index corresponds to the “stick” compartment volume fraction estimated in every voxel. In this work, we provide evidence that the distribution of stick volume fraction is characteristic of the brain tissue and is highly reproducible between subjects but strongly depends on the underlying multi-compartment model definition. In particular, in-vivo results on 10 subjects of the Human Connectome Project show that the neurite density distribution depends on both the stick parallel diffusivity and the extra-axonal compartment model.

1. Jespersen, S.N., Bjarkam, C.R., Nyengaard, J.R., Chakravarty, M.M., Hansen, B.,Vosegaard, T., Stergaard, L., Yablonskiy, D., Nielsen, N.C., Vestergaard-Poulsen,P. (2010) : Neurite density from magnetic resonance diffusion measurements at ultrahighfield: Comparison with light microscopy and electron microscopy. NeuroImage49(1) 205 – 216

2. Zhang, H., Schneider, T., Wheeler-Kingshott, C. A., and Alexander, D. C. (2012). NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage, 61(4), 1000-1016.

3. Lampinen, B., Szczepankiewicz, F., Mårtensson, J., van Westen, D., Sundgren, P. C., & Nilsson, M. (2017). Neurite density imaging versus imaging of microscopic anisotropy in diffusion MRI: A model comparison using spherical tensor encoding. NeuroImage, 147, 517-531.

4. Novikov, D. S., Jespersen, S. N., Kiselev, V. G., and Fieremans, E. (2016). Quantifying brain microstructure with diffusion MRI: Theory and parameter estimation. arXiv preprint arXiv:1612.02059.

5. Reisert, M., Kellner, E., Dhital, B., Hennig, J., & Kiselev, V. G. (2017). Disentangling micro from mesostructure by diffusion MRI: A Bayesian approach. NeuroImage, 147, 964-975.

6. Behrens, T. E., Woolrich, M. W., Jenkinson, M., Johansen Berg, H., Nunes, R. G., Clare, S., and Smith, S. M. (2003). Characterization and propagation of uncertainty in diffusion weighted MR imaging. Magnetic resonance in medicine, 50(5), 1077-1088.

7. Zucchelli, M., Descoteaux, M., Menegaz, G. (2017), A generalized SMT-based framework for Diffusion MRI microstructural model estimation. Proceedings of "Medical Image Computing and Computer Assisted Intervention (MICCAI), Workshop on Computational Diffusion MRI (CDMRI)" , Quebec City, Canada.

8. Sotiropoulos, S.N., Jbabdi, S., Xu, J., Andersson, J.L., Moeller, S., Auerbach,E.J., Glasser, M.F., Hernandez, M., Sapiro, G., Jenkinson, M., et al. (2013): Advancesin diffusion MRI acquisition and processing in the human connectome project.NeuroImage 80 125–143

9. Kaden, E., Kelm, N. D., Carson, R. P., Does, M. D., and Alexander, D. C. (2016). Multi-compartment microscopic diffusion imaging. NeuroImage, 139, 346-359.

10. Zucchelli, M., Descoteaux, M., & Menegaz, G. (2017). NODDI-SH: a computational efficient NODDI extension for fODF estimation in diffusion MRI. arXiv preprint arXiv:1708.08999.