Sex differences in resting CBF has been reported, these differences may be explained through sex differences in sex hormones. There is currently no study that examines if this difference is maintained during stimulus-induced CBF. The current study evaluated men and naturally cycling women three times during their menstrual cycle at different sex hormone levels using a pCASL sequence. Preliminary results reveal sex differences in CBF response to the same stimulus, which is amplified when one considers sex hormones. These findings may reflect vascular effects of sex hormones, highlighting the importance of considering sex and hormone profiles when conducting fMRI
1. Kastrup A, Li T-Q, Glover GH, Kruger G, Moseley ME. Gender Differences in Cerebral Blood Flow and Oxygenation Response During Focal Physiologic Neural Activity. J Cereb Blood Flow Metaholism. 19:1066-1. http://journals.sagepub.com/doi/pdf/10.1097/00004647-199910000-00002. Accessed November 6, 2017.
2. Gur RE, Gur RC. Gender differences in regional cerebral blood flow. Schizophr Bull. 1990;16(2):247-254. doi:10.1093/schbul/16.2.247.
3. Rodriguez G, Warkentin S, Risberg J, Rosadini G. Sex differences in regional cerebral blood flow. J Cereb Blood Flow Metab. 1988;8(6):783-789. doi:10.1038/jcbfm.1988.133.
4. Parkes LM, Rashid W, Chard DT, Tofts PS. Normal Cerebral Perfusion Measurements Using Arterial Spin Labeling: Reproducibility, Stability, and Age and Gender Effects. Magn Reson Med. 2004;51(4):736-743. doi:10.1002/mrm.20023.
5. Geary GG, Krause DN, Duckles SP. Estrogen reduces myogenic tone through a nitric oxide-dependent mechanism in rat cerebral arteries. Am J Physiol. 1998;275(1 Pt 2):H292-300. http://www.ncbi.nlm.nih.gov/pubmed/9688926.
6. Geary GG, Krause DN, Duckles SP. Estrogen reduces mouse cerebral artery tone through endothelial NOS- and cyclooxygenase-dependent mechanisms. Am J Physiol Heart Circ Physiol. 2000;279(2):H511-9. http://www.ncbi.nlm.nih.gov/pubmed/10924048.
7. Duckles SP, Krause DN. Cerebrovascular effects of oestrogen: Multiplicity of action. Clin Exp Pharmacol Physiol. 2007;34(8):801-808. doi:10.1111/j.1440-1681.2007.04683.x.
8. Krause DN, Duckles SP, Pelligrino D a. Influence of sex steroid hormones on cerebrovascular function. J Appl Physiol. 2006;101(4):1252-1261. doi:10.1152/japplphysiol.01095.2005.
9. Miller VM, Duckles SP. Vascular actions of estrogens: functional implications. Pharmacol Rev. 2008;60(2):210-241.
10. Ospina J a, Duckles SP, Krause DN. 17beta-estradiol decreases vascular tone in cerebral arteries by shifting COX-dependent vasoconstriction to vasodilation. Am J Physiol Heart Circ Physiol. 2003;285(1):H241-H250. doi:10.1152/ajpheart.00018.2003.
11. Pelligrino D a, Galea E. Estrogen and cerebrovascular physiology and pathophysiology. Jpn J Pharmacol. 2001;86(2):137-158. doi:10.1254/jjp.86.137.
12. Toda N, Ayajiki K, Okamura T. Cerebral blood flow regulation by nitric oxide : Pharmacol Rev. 2009;61(1):62-97. doi:10.1124/pr.108.000547.62.
13. Rosselli M, Imthurm B, Macas E, Keller PJ, Dubey RK. Circulating nitrite/nitrate levels increase with follicular development: indirect evidence for estradiol mediated NO release. Biochem Biophys Res Commun. 1994;202(3):1543-1552. doi:10.1006/bbrc.1994.2107.
14. Forte P, Kneale BJ, Milne E, et al. Evidence for a Difference in Nitric Oxide Biosynthesis Between Healthy Women and Men. 1998:730-734.
15. Meyer MC, Brayden JE, McLaughlin MK. Characteristics of vascular smooth muscle in the maternal resistance circulation during pregnancy in the rat. Am J Obstet Gynecol. 1993;169(6):1510-1516. doi:10.1016/0002-9378(93)90427-K.
16. Stirone C, Boroujerdi A, Duckles SP, Krause DN. Estrogen receptor activation of phosphoinositide-3 kinase, akt, and nitric oxide signaling in cerebral blood vessels: rapid and long-term effects. Mol Pharmacol. 2005;67(1):105-113. doi:10.1124/mol.104.004465.receptor.
17. Hashimoto I, Henricks DM, Anderson LL, Melampy RM. Progesterone and pregn-4-en-20 alpha-ol-3-one in ovarian venous blood during various reproductive states in the rat. Endocrinology. 1968;82(2):333-341.
18. Yoshinaga K, Hawkins RA, Stocker JF. Estrogen secretion by the rat ovary in vivo during the estrous cycle and pregnancy. Endocrinology. 1969;85(1):103-112. doi:10.1210/endo-85-1-103.
19. Pang Y, Thomas P. Additive effects of low concentrations of estradiol-17β and progesterone on nitric oxide production by human vascular endothelial cells through shared signaling pathways. J Steroid Biochem Mol Biol. 2017;165:258-267. doi:10.1016/j.jsbmb.2016.06.014.
20. Thomas P, Pang Y. Protective actions of progesterone in the cardiovascular system: Potential role of membrane progesterone receptors (mPRs) in mediating rapid effects. Steroids. 2013;78(6):583-588. doi:10.1016/j.steroids.2013.01.003.
21. Stell BM, Brickley SG, Tang CY, Farrant M, Mody I. Neuroactive steroids reduce neuronal excitability by selectively enhancing tonic inhibition mediated by delta subunit-containing GABAA receptors. Proc Natl Acad Sci U S A. 2003;100(24):14439-14444. doi:10.1073/pnas.2435457100.
22. Smith SS. Progesterone administration attenuates excitatory amino acid responses of cerebellar Purkinje cells. Neuroscience. 1991;42(2):309-320. doi:10.1016/0306-4522(91)90377-Z.
23. Bitran D, Purdy RH, Kellog CK. Anxiolytic effect of progesterone is associated with increases in cortical alloprenanolone and GABAA receptor function. Pharmacol Biochem Behav. 1993;45(2):423-428. doi:10.1016/0091-3057(93)90260-Z.
24. Logothetis NK, Wandell B a. Interpreting the BOLD signal. Annu Rev Physiol. 2004;66:735-769. doi:10.1146/annurev.physiol.66.082602.092845.