In mild cognitive impairment (MCI), posterior cingulate cortex glucose hypometabolism may results from posterior cingulum (PCg) alterations. We suggest that raising ketone availability to the brain may overcome the brain energy deficit. We developed a dual-tracer PET/dMRI tractometry method to assess whether a ketogenic supplement has impact on fuel uptake in the PCg of MCI participants. Mean fuel uptake in the PCg was unchanged post-supplementation, but tract-profiling enabled the identification of sections with lower glucose uptake. Energy supply in white matter fascicles is crucial to sustain adequate axonal function and may be linked to the pathogenesis of MCI.
1. Stebbins, G. T. & Murphy, C. M. Diffusion tensor imaging in Alzheimer's disease and mild cognitive impairment. Behav Neurol 21, 39-49, doi:10.3233/BEN-2009-0234 (2009).
2. Bozoki, A. C., Korolev, I. O., Davis, N. C., Hoisington, L. A. & Berger, K. L. Disruption of limbic white matter pathways in mild cognitive impairment and Alzheimer's disease: a DTI/FDG-PET study. Hum Brain Mapp 33, 1792-1802, doi:10.1002/hbm.21320 (2012).
3. Chetelat, G. et al. Dissociating atrophy and hypometabolism impact on episodic memory in mild cognitive impairment. Brain 126, 1955-1967, doi:10.1093/brain/awg196 (2003).
4. Croteau, E. et al. A cross-sectional comparison of brain glucose and ketone metabolism in cognitively healthy older adults, mild cognitive impairment and early Alzheimer's disease. Exp Gerontol, doi:10.1016/j.exger.2017.07.004 (2017).
5. Villain, N. et al. Relationships between hippocampal atrophy, white matter disruption, and gray matter hypometabolism in Alzheimer's disease. J Neurosci 28, 6174-6181, doi:10.1523/JNEUROSCI.1392-08.2008 (2008).
6. Fischer, F. U., Wolf, D. & Andreas Fellgiebel for the Alzheimer's Disease Neuroimaging, I. Diaschisis-Like Association of Hippocampal Atrophy and Posterior Cingulate Cortex Hypometabolism in Cognitively Normal Elderly Depends on Impaired Integrity of Parahippocampal Cingulum Fibers. J Alzheimers Dis, doi:10.3233/JAD-170147 (2017).
7. Villain, N. et al. Sequential relationships between grey matter and white matter atrophy and brain metabolic abnormalities in early Alzheimer's disease. Brain 133, 3301-3314, doi:10.1093/brain/awq203 (2010).
8. Cunnane, S. C. et al. Can Ketones Help Rescue Brain Fuel Supply in Later Life? Implications for Cognitive Health during Aging and the Treatment of Alzheimer's Disease. Front Mol Neurosci 9, 53, doi:10.3389/fnmol.2016.00053 (2016).
9. Courchesne-Loyer, A. et al. Inverse relationship between brain glucose and ketone metabolism in adults during short-term moderate dietary ketosis: A dual tracer quantitative positron emission tomography study. J Cereb Blood Flow Metab 37, 2485-2493, doi:10.1177/0271678X16669366 (2017).
10. Basser, P. J. & Pierpaoli, C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 111, 209-219 (1996).
11. Pasternak, O., Sochen, N., Gur, Y., Intrator, N. & Assaf, Y. Free water elimination and mapping from diffusion MRI. Magn Reson Med 62, 717-730, doi:10.1002/mrm.22055 (2009).
12. Raffelt, D. et al. Apparent Fibre Density: a novel measure for the analysis of diffusion-weighted magnetic resonance images. Neuroimage 59, 3976-3994, doi:10.1016/j.neuroimage.2011.10.045 (2012).
13. Dell'Acqua, F., Simmons, A., Williams, S. C. & Catani, M. Can spherical deconvolution provide more information than fiber orientations? Hindrance modulated orientational anisotropy, a true-tract specific index to characterize white matter diffusion. Hum Brain Mapp 34, 2464-2483, doi:10.1002/hbm.22080 (2013).
14. Girard, G., Whittingstall, K., Deriche, R. & Descoteaux, M. Towards quantitative connectivity analysis: reducing tractography biases. Neuroimage 98, 266-278, doi:10.1016/j.neuroimage.2014.04.074 (2014).
15. Catani, M., Dell'acqua, F. & Thiebaut de Schotten, M. A revised limbic system model for memory, emotion and behaviour. Neurosci Biobehav Rev 37, 1724-1737, doi:10.1016/j.neubiorev.2013.07.001 (2013).
16. Wassermann, D. et al. The white matter query language: a novel approach for describing human white matter anatomy. Brain Struct Funct 221, 4705-4721, doi:10.1007/s00429-015-1179-4 (2016).
17. Cousineau, M. et al. A test-retest study on Parkinson's PPMI dataset yields statistically significant white matter fascicles. Neuroimage Clin 16, 222-233, doi:10.1016/j.nicl.2017.07.020 (2017).
18. Whitford, T. J. et al. Localized abnormalities in the cingulum bundle in patients with schizophrenia: a Diffusion Tensor tractography study. Neuroimage Clin 5, 93-99, doi:10.1016/j.nicl.2014.06.003 (2014).
19. Ranganath, C. & Ritchey, M. Two cortical systems for memory-guided behaviour. Nat Rev Neurosci 13, 713-726, doi:10.1038/nrn3338 (2012).
20. Kalheim, L. F. et al. Amyloid Dysmetabolism Relates to Reduced Glucose Uptake in White Matter Hyperintensities. Front Neurol 7, 209, doi:10.3389/fneur.2016.00209 (2016).
21. Harris, J. J. & Attwell, D. The energetics of CNS white matter. J Neurosci 32, 356-371, doi:10.1523/JNEUROSCI.3430-11.2012 (2012).
22. Wender, R. et al. Astrocytic glycogen influences
axon function and survival during glucose deprivation in central white matter. J Neurosci 20, 6804-6810 (2000).