The hippocampal formation consists of distinct subfields, which contribute to different aspects of memory function, and exhibit different brain network topologies. However, the brain-wide resting-state functional connectivity of hippocampal subfields in human remains poorly understood mainly due to technical limitations. Previous efforts to identify hippocampal subfield functional networks compromised either spatial resolution, spatial coverage or temporal resolution. We have developed a new approach, named Partition-encoded Simultaneous Multi-slab (PRISM), capable of acquiring ultrahigh isotropic resolution images while maintaining the acceleration capability. Our results of resting-state functional connectivity at 7T reveal distinct brain-wide functional networks associated with different hippocampal subfields.
1. Lo, R.Y., et al., Longitudinal change of biomarkers in cognitive decline. Arch Neurol, 2011. 68(10): p. 1257-66.
2. La Joie, R., et al., Hippocampal subfield volumetry in mild cognitive impairment, Alzheimer's disease and semantic dementia. Neuroimage Clin, 2013. 3: p. 155-62.
3. Jack, C.R., Jr., et al., Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol, 2013. 12(2): p. 207-16.
4. Sabattoli, F., et al., Hippocampal shape differences in dementia with Lewy bodies. Neuroimage, 2008. 41(3): p. 699-705.
5. Lindberg, O., et al., Hippocampal shape analysis in Alzheimer's disease and frontotemporal lobar degeneration subtypes. J Alzheimers Dis, 2012. 30(2): p. 355-65.
6. Kril, J.J., et al., Patients with vascular dementia due to microvascular pathology have significant hippocampal neuronal loss. J Neurol Neurosurg Psychiatry, 2002. 72(6): p. 747-51.
7. Gemmell, E., et al., Hippocampal neuronal atrophy and cognitive function in delayed poststroke and aging-related dementias. Stroke, 2012. 43(3): p. 808-14.
8. Maruszak, A. and S. Thuret, Why looking at the whole hippocampus is not enough-a critical role for anteroposterior axis, subfield and activation analyses to enhance predictive value of hippocampal changes for Alzheimer's disease diagnosis. Front Cell Neurosci, 2014. 8: p. 95.
9. de Flores, R., et al., Intrinsic connectivity of hippocampal subfields in normal elderly and mild cognitive impairment patients. Hum Brain Mapp, 2017.
10. Yassa, M.A., et al., Age-related memory deficits linked to circuit-specific disruptions in the hippocampus. Proc Natl Acad Sci U S A, 2011. 108(21): p. 8873-8.
11. Bergmann, E., et al., The Organization of Mouse and Human Cortico-Hippocampal Networks Estimated by Intrinsic Functional Connectivity. Cereb Cortex, 2016. 26(12): p. 4497-4512.
12. Chang, W.T. and W. Lin. Fast imaging with ultrahigh isotropic resolution using partition-encoded simultaneous multi-slab (PRISM). in International Society for Magnetic Resonance in Medicine. 2018. #8446. Paris, France.
13. Setsompop, K., et al., Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty. Magn Reson Med, 2012. 67(5): p. 1210-24.
14. Griswold, M.A., et al., Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med, 2002. 47(6): p. 1202-10.
15. Smith, S.M., et al., Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage, 2004. 23 Suppl 1: p. S208-19.
16. Beckmann, C.F., et al., Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci, 2005. 360(1457): p. 1001-13.
17. Salimi-Khorshidi, G., et al., Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers. Neuroimage, 2014. 90: p. 449-68.
18. Avants, B.B., et al., The Insight ToolKit image registration framework. Front Neuroinform, 2014. 8: p. 44.
19. Iglesias, J.E., et al., A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI. Neuroimage, 2015. 115: p. 117-37.
20. Cingulate binds learning. Trends Cogn Sci, 1997. 1(1): p. 2.
21. Frankland, P.W., et al., The involvement of the anterior cingulate cortex in remote contextual fear memory. Science, 2004. 304(5672): p. 881-3.
22. Mueller, S.G., et al., Evidence for functional specialization of hippocampal subfields detected by MR subfield volumetry on high resolution images at 4 T. Neuroimage, 2011. 56(3): p. 851-7.
23. Nieuwenhuis, I.L. and A. Takashima, The role of the ventromedial prefrontal cortex in memory consolidation. Behav Brain Res, 2011. 218(2): p. 325-34.
24. Liu, Y., et al., Memory consolidation reconfigures neural pathways involved in the suppression of emotional memories. Nat Commun, 2016. 7: p. 13375.
25. Sutherland, R.J., I.Q. Whishaw, and B. Kolb, Contributions of cingulate cortex to two forms of spatial learning and memory. J Neurosci, 1988. 8(6): p. 1863-72.
26. Bakker, A., et al., Pattern separation in the human hippocampal CA3 and dentate gyrus. Science, 2008. 319(5870): p. 1640-2.