Iron measured by MRI in vivo would contribute to searching for iron-related biomarkers in neurodegenerative diseases, like Parkinson's disease.
Here, we would like to briefly introduce the technological development of MRI in assessing brain iron, discuss the nigral iron as a potential marker for PD in both clinical and prodromal stages, further put insight into other influences of regional iron on PD symptoms.
[1] R.J. Ward, F.A. Zucca, J.H. Duyn, R.R. Crichton, and L. Zecca, The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol 2014;13:1045-60.
[2] R.J. Ward, D.T. Dexter, and R.R. Crichton, Neurodegenerative diseases and therapeutic strategies using iron chelators. J Trace Elem Med Biol 2015;31:267-273.
[3] J.A. Gaasch, P.R. Lockman, W.J. Geldenhuys, D.D. Allen, and C.J. Van der Schyf, Brain iron toxicity: differential responses of astrocytes, neurons, and endothelial cells. Neurochem Res 2007;32:1196-208.
[4] E. Sofic, P. Riederer, H. Heinsen, H. Beckmann, G.P. Reynolds, G. Hebenstreit, and M.B. Youdim, Increased iron (III) and total iron content in post mortem substantia nigra of parkinsonian brain. J Neural Transm 1988;74:199-205.
[5] D.T. Dexter, F.R. Wells, F. Agid, Y. Agid, A.J. Lees, P. Jenner, and C.D. Marsden, Increased nigral iron content in postmortem parkinsonian brain. Lancet 1987;2:1219-20.
[6] E. Sofic, W. Paulus, K. Jellinger, P. Riederer, and M.B. Youdim, Selective increase of iron in substantia nigra zona compacta of parkinsonian brains. J Neurochem 1991;56:978-82.
[7] G. Bartzokis, M. Beckson, D.B. Hance, P. Marx, J.A. Foster, and S.R. Marder, MR evaluation of age-related increase of brain iron in young adult and older normal males. Magn Reson Imaging 1997;15:29-35.
[8] G. Bartzokis, J. Mintz, D. Sultzer, P. Marx, J.S. Herzberg, C.K. Phelan, and S.R. Marder, In vivo MR evaluation of age-related increases in brain iron. AJNR Am J Neuroradiol 1994;15:1129-38.
[9] C. Langkammer, N. Krebs, W. Goessler, E. Scheurer, F. Ebner, K. Yen, F. Fazekas, and S. Ropele, Quantitative MR imaging of brain iron: a postmortem validation study. Radiology 2010;257:455-62.
[10] Y. Qin, W. Zhu, C. Zhan, L. Zhao, J. Wang, Q. Tian, and W. Wang, Investigation on positive correlation of increased brain iron deposition with cognitive impairment in Alzheimer disease by using quantitative MR R2' mapping. J Huazhong Univ Sci Technolog Med Sci 2011;31:578-85.
[11] N. Gelman, J.M. Gorell, P.B. Barker, R.M. Savage, E.M. Spickler, J.P. Windham, and R.A. Knight, MR imaging of human brain at 3.0 T: preliminary report on transverse relaxation rates and relation to estimated iron content. Radiology 1999;210:759-67.
[12] W.Z. Zhu, W.D. Zhong, W. Wang, C.J. Zhan, C.Y. Wang, J.P. Qi, J.Z. Wang, and T. Lei, Quantitative MR phase-corrected imaging to investigate increased brain iron deposition of patients with Alzheimer disease. Radiology 2009;253:497-504.
[13] X. Xu, Q. Wang, and M. Zhang, Age, gender, and hemispheric differences in iron deposition in the human brain: an in vivo MRI study. Neuroimage 2008;40:35-42.
[14] C. Langkammer, F. Schweser, N. Krebs, A. Deistung, W. Goessler, E. Scheurer, K. Sommer, G. Reishofer, K. Yen, F. Fazekas, S. Ropele, and J.R. Reichenbach, Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation study. Neuroimage 2012;62:1593-9.
[15] W. Li, B. Wu, A. Batrachenko, V. Bancroft-Wu, R.A. Morey, V. Shashi, C. Langkammer, M.D. De Bellis, S. Ropele, A.W. Song, and C. Liu, Differential developmental trajectories of magnetic susceptibility in human brain gray and white matter over the lifespan. Hum Brain Mapp 2014;35:2698-713.
[16] B. Wu, W. Li, A. Guidon, and C. Liu, Whole brain susceptibility mapping using compressed sensing. Magn Reson Med 2012;67:137-47.
[17] J. Jankovic, M. McDermott, J. Carter, S. Gauthier, C. Goetz, L. Golbe, S. Huber, W. Koller, C. Olanow, I. Shoulson, and A. Et, Variable expression of Parkinson's disease: a base-line analysis of the DATATOP cohort. The Parkinson Study Group. Neurology 1990;40:1529-34.
[18] A.J. Lees, J. Hardy, and T. Revesz, Parkinson's disease. LANCET 2009;373:2055-2066.
[19] A.J. Hughes, S.E. Daniel, L. Kilford, and A.J. Lees, Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 1992;55:181-4.
[20] P. Damier, E.C. Hirsch, Y. Agid, and A.M. Graybiel, The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson's disease. Brain 1999;122 ( Pt 8):1437-48. [21] J.M. Fearnley, and A.J. Lees, Ageing and Parkinson's disease: substantia nigra regional selectivity. Brain 1991;114 ( Pt 5):2283-301.
[22] H. Braak, E. Ghebremedhin, U. Rub, H. Bratzke, and T.K. Del, Stages in the development of Parkinson's disease-related pathology. Cell Tissue Res 2004;318:121-34.
[23] H. Braak, T.K. Del, U. Rub, R.A. de Vos, S.E. Jansen, and E. Braak, Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol Aging 2003;24:197-211.
[24] C.H. Adler, T.G. Beach, J.G. Hentz, H.A. Shill, J.N. Caviness, E. Driver-Dunckley, M.N. Sabbagh, L.I. Sue, S.A. Jacobson, C.M. Belden, and B.N. Dugger, Low clinical diagnostic accuracy of early vs advanced Parkinson disease: clinicopathologic study. Neurology 2014;83:406-12.
[25] A.H. Rajput, B. Rozdilsky, and A. Rajput, Accuracy of clinical diagnosis in parkinsonism--a prospective study. Can J Neurol Sci 1991;18:275-8.