MRI parcellation and connectivity is widely used in neuroscience, however their validation have been challenging. In this talk, sevreral validation methods will be discussed, such as histology, polarized light imaging and optical coherence tomography.
Scientists interested in validation of MRI segmentation and connectivity
The goal is to show methods to validate MRI parcellation and MRI connectivity
Several techniques for validation will be explored: histology, polarized light imaging and optical coherence tomography
While structural brain mapping has improved with high resolution ex vivo MRI, the resolution and contrast of MRI has limits that constrain our ability to visualize cytoarchitectural features in association cortices, even ex vivo. Refined localization of brain areas is critical for application to diseases such as autism, schizophrenia and Alzheimer's disease, as well as functional MRI studies. Diffusion-weighted MRI (DW-MRI) allows us to probe the microstructure of the white matter by estimating the preferential directions of the diffusion of water molecules at every voxel. Although DW-MRI is now widely used to study WM integrity in health and disease, its validation has been challenging due to the absence of ground truth regarding the true connectivity of the brain. In this talk, I will present several methods for the validation of structural and connectivity MRI.
[1] K. Amunts, C. Lepage, L. Borgeat, H. Mohlberg, T. Dickscheid, M.-E. Rousseau, S. Bludau, P.-L. Bazin, L. B. Lewis, A.-M. Oros-Peusquens, N. J. Shah, T. Lippert, K. Zilles, and A. C. Evans, “BigBrain: an ultrahigh-resolution 3D human brain model.,” Science (New York, N.Y.), vol. 340, pp. 1472–5, June 2013.
[2] S.-l. Ding, J. J. Royall, S. M. Sunkin, L. Ng, B. A. C. Facer, P. Lesnar, A. Guillozet-bongaarts, B. Mcmurray, A. Szafer, T. A. Dolbeare, A. Stevens, L. Tirrell, T. Benner, S. Caldejon, R. A. Dalley, N. Dee, C. Lau, J. Nyhus, M. Reding, Z. L. Riley, D. Sandman, E. Shen, A. V. D. Kouwe, A. Varjabedian, M. Write, L. Zollei, C. Dang, J. A. Knowles, C. Koch, J. W. Phillips, N. Sestan, P. Wohnoutka, H. R. Zielke, J. G. Hohmann, A. R. Jones, A. Bernard, M. J. Hawrylycz, P. R. Hof, B. Fischl, and E. S. Lein, “Comprehensive Cellular-Resolution Atlas of the Adult Human Brain,” Journal of Comparative Neurology, vol. 524, pp. 3127–3481, 2016.
[3] Axer, M., Amunts, K., Grässel, D., Palm, C., Dammers, J., Axer, H., ... & Zilles, K. (2011). A novel approach to the human connectome: ultra-high resolution mapping of fiber tracts in the brain. Neuroimage, 4(2), 1091-1101.
[4] V. Arsigny, X. Pennec, and N. Ayache, “Polyrigid and polyaffine transformations : A novel geometrical tool to deal with non-rigid deformations – Application to the registration of histological slices,” Medical Image Analysis, vol. 9, pp. 507–523, 2005.
[5] S. Osechinskiy and F. Kruggel, “Slice-to-Volume Nonrigid Registration of Histological Sections to MR Images of the Human Brain,” Anatomy Research International, vol. 2011, 2011.
[6] Huang, D., Swanson, E. A., Lin, C. P., Schuman, J. S., Stinson, W. G., Chang, W., Hee, M. R., Flotte, T., Gregory, K., Puliafito, C. A., Fujimoto, J. G., 1991. Optical Coherence Tomography. Science 254, pp 1178–1181.
[7] C. Magnain, J. C. Augustinack, M. Reuter, C. Wachinger, M. P. Frosch, T. Ragan, T. Akkin, V. J. Wedeen, D. a. Boas, and B. Fischl, “Blockface histology with optical coherence tomography: A comparison with Nissl staining,” NeuroImage, vol. 84, pp. 524–533, Sept. 2014.
[8] Wang, H., Zhu, J., Reuter, M., Vinke, L. N., Yendiki, A., Boas, D. A., ... & Akkin, T. (2014). Cross-validation of serial optical coherence scanning and diffusion tensor imaging: a study on neural fiber maps in human medulla oblongata. Neuroimage, 100, 395-404.