While the paramagnetic properties of Mangnaese (Mn) make it useful as a contrast agent for MRI, little is known about the spatial distribution of Mn deposition in the human brain due to occupational Mn exposure. Using a novel approach to analyze and visualize whole brain Mn deposition in welders, Mn was elevated in motor and cognitive associated networks, consistent with respective reports on impaired neuropsychological function. Our Mn maps even reveal the diffusion of Mn along white matter tracts for the first time in humans. These findings help explain how Mn exposure affects the function of particular brain networks.
Purpose
Manganese (Mn) can serve as a contrast agent for MRI1 due to its paramagnetic property resulting in hyperintensities in T1 weighted images2,3. Yet, Mn is known to be neurotoxic and chronic exposure to Mn, even in occupational settings such as welding, can lead to cognitive and motor deficits4,5. Several studies have shown that changes in T1 due to elevated Mn deposition in specific brain regions, mainly within the basal ganglia, may be correlated with cognitive deficits6–8. Recent research on Mn-exposed non-human primates manifested a more widespread accumulation of Mn in white matter and cortex9 while neurobehavioral exams also revealed cortical dysfunction, including impaired short-term memory, computational ability and visuospatial learning in non-human primates10,11 and Mn-exposed workers12,13. Yet, an in-vivo systematic and quantitative whole-brain analysis of Mn accumulation, including cortical brain areas, is still lacking to date. To further study the relationship between exposure, brain function and Mn accumulation, we developed a 3D whole-brain MRI approach to visualize Mn in welders.1. Massaad CA, Pautler RG. Manganese-enhanced magnetic resonance imaging (MEMRI). Methods Mol Biol. 2011;711:145-174. doi:10.1007/978-1-61737-992-5_7.
2. Bearer EL, Falzone TL, Zhang X, Biris O, Rasin A, Jacobs RE. Role of neuronal activity and kinesin on tract tracing by manganese-enhanced MRI (MEMRI). Neuroimage. 2007;37 Suppl 1:S37-46. doi:10.1016/j.neuroimage.2007.04.053.
3. Inoue T, Majid T, Pautler RG. Manganese enhanced MRI (MEMRI): Neurophysiological applications. Rev Neurosci. 2011;22(6):675-694. doi:10.1515/RNS.2011.048.
4. Bowler RM, Gocheva V, Harris M, et al. Prospective study on neurotoxic effects in manganese-exposed bridge construction welders. Neurotoxicology. 2011;32(5):596-605. doi:10.1016/j.neuro.2011.06.004.
5. Meyer-Baron M, Schäper M, Knapp G, et al. The neurobehavioral impact of manganese: Results and challenges obtained by a meta-analysis of individual participant data. Neurotoxicology. 2013;36:1-9. doi:10.1016/j.neuro.2013.02.003.
6. Yeh C-L, Zauber E, Snyder S, Long Z, Dydak U. Motor and Cognitive Processing Networks show increased Manganese Accumulation in Metal Workers. In: The 22th Annual Meeting of ISMRM, Milan, Italy. ; 2014:5363.
7. Middleton F a, Strick PL. Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science (80). 1994;266(5184):458-461. doi:10.1126/science.7939688.
8. Lee E-YY, Flynn MR, Du G, et al. T1 relaxation rate (R1) indicates nonlinear mn accumulation in brain tissue of welders with low-level exposure. Toxicol Sci. 2015;146(2):281-289. doi:10.1093/toxsci/kfv088.
9. Guilarte TR, McGlothan JL, Degaonkar M, et al. Evidence for cortical dysfunction and widespread manganese accumulation in the nonhuman primate brain following chronic manganese exposure: a 1H-MRS and MRI study. Toxicol Sci. 2006;94(2):351-358. doi:10.1093/toxsci/kfl106.
10. Schneider JS, Decamp E, Koser AJ, et al. Effects of chronic manganese exposure on cognitive and motor functioning in non-human primates. Brain Res. 2006;1118(1):222-231. doi:10.1016/j.brainres.2006.08.054.
11. Schneider JS, Williams C, Ault M, Guilarte TR. Chronic manganese exposure impairs visuospatial associative learning in non-human primates. Toxicol Lett. 2013;221(2):146-151. doi:10.1016/j.toxlet.2013.06.211.
12. Ellingsen DG, Konstantinov R, Bast-Pettersen R, et al. A neurobehavioral study of current and former welders exposed to manganese. Neurotoxicology. 2008;29(1):48-59. doi:10.1016/j.neuro.2007.08.014.
13. Cowan DM, Zheng W, Zou Y, et al. Manganese exposure among smelting workers: Relationship between blood manganese-iron ratio and early onset neurobehavioral alterations. Neurotoxicology. 2009;30(6):1214-1222. doi:10.1016/j.neuro.2009.02.005.
14. Deoni SCL, Rutt BK, Peters TM. Rapid combined T1 and T2 mapping using gradient recalled acquisition in the steady state. Magn Reson Med. 2003;49(3):515-526. doi:10.1002/mrm.10407.
15. Sabati M, Maudsley A a. Fast and high-resolution quantitative mapping of tissue water content with full brain coverage for clinically-driven studies. Magn Reson Imaging. 2013;31(10):1752-1759. doi:10.1016/j.mri.2013.08.001.
16. Lakhan S, Abboud H. Teaching NeuroImages: Manganese neurotoxicity of the basal ganglia and thalamus. Neurology. 2013;81(14):2013. doi:10.1212/WNL.0b013e3182a6cb86.
17. Picard N, Strick PL. Motor areas of the medial wall: a review of their location and functional activation. Cereb Cortex. 1996;6(3):342-353. doi:10.1093/CERCOR/6.3.342.
18. Chang Y, Lee J-JJ, Seo J-HH, et al. Altered working memory process in the manganese-exposed brain. Neuroimage. 2010;53(4):1279-1285. doi:10.1016/j.neuroimage.2010.07.001.
19. Orban G a, Van Essen D, Vanduffel W. Comparative mapping of higher visual areas in monkeys and humans. Trends Cogn Sci. 2004;8(7):315-324. doi:10.1016/j.tics.2004.05.009.
20. Huang C, Chu N, Lu C, Al E. Chronic manganese intoxication. Arch Neurol. 1989;46(10):1104-1106. http://dx.doi.org/10.1001/archneur.1989.00520460090018.