There is a need for non-invasive biomarkers that enable accurate tracking of early, pre-symptomatic phases of Alzheimer’s disease (AD). Previous fMRI studies have differentiated AD patients from healthy controls. However, it is unknown whether the accumulation of tau or amyloid pathology is driving the fMRI irregularity. This is the first study to investigate whether tau pathology alone can modulate task-based BOLD fMRI. We observed stronger BOLD responses to visual stimulation in lateral geniculate nucleus and superior colliculus in the tau cohort, mirroring observations in mild AD and MCI patients.
Alzheimer’s disease (AD) is the most common form of dementia, with symptoms that include cognitive impairment and memory loss. There is no definitive diagnostic test for this devastating disease and current AD biomarkers each have their own limitations. For example, CSF sampling for detection of amyloid-β/tau is an invasive procedure which requires a lumbar puncture, while FDG-PET and structural MRI are sensitive to neuronal injury which occurs at a relatively late stage of the disease. The development of a safe and non-invasive early biomarker may provide an early window for therapeutic intervention in order to delay or prevent clinical symptoms occurring later in life.
fMRI has been investigated as a possible biomarker of AD. The results are promising, with differences in fMRI responses observed between AD patients and healthy controls.1 However, how the major molecular correlates of AD (amyloid-β/tau) may act to modulate the fMRI signal is poorly understood. In order to better understand the interaction of pathology and the fMRI signal, we characterized the fMRI signature to visual stimulation in a mouse model of tauopathy, the rTg4510,2 enabling the novel assessment of the relationship between tau pathology alone and clinically relevant non-invasive fMRI measures.
[1]- Wierenga, C.E., Stricker, N.H., McCauley, A., Simmons, A., Jak, A.J., Chang, Y.L., Nation, D.A., Bangen, K.J., Salmon, D.P., Bondi, M.W., 2011. Altered brain response for semantic knowledge in Alzheimer's disease. Neuropsychologia 49:392–404.
[2]- Wells, J.A., O'Callaghan, J.M., Holmes, H.E., Powell, N.M., Johnson, R.A., Siow, B., Torrealdea, F., Ismail, O., Walker-Samuel, S., Golay, X., Rega, M., Richardson, S., Modat, M., Cardoso, M.J., Ourselin, S., Schwarz, A.J., Ahmed, Z., Murray, T.K., O'Neill, M.J., Collins, E.C., Colgan, N., Lythgoe, M.F., 2015. In vivo imaging of tau pathology using multi-parametric quantitative MRI. NeuroImage. 111 pp. 369–378
[3]- Niranjan, A., Christie, I.N., Solomon, S.G., Wells, J.A., Lythgoe, M.F., 2016. fMRI mapping of the visual system in the mouse brain with interleaved snapshot GE-EPI. Nueroimage. 139 pp. 337-345
[4]- Lein, E.S., Hawrylycz, M.J., Ao, N., Ayres, M., Bensinger, A., Bernard, A., Boe, A.F., Boguski, M.S., Brockway, K.S., Byrnes, E.J., Chen, L., Chen, L., Chen, T.-M., Chi Chin, M., Chong, J., Crook, B.E., Czaplinska, A., Dang, C.N., Datta, S., Dee, N.R., Desaki, A.L., Desta, T., Diep, E., Dolbeare, T.A., Donelan, M.J., Dong, H.-W., Dougherty, J.G., Duncan, B.J., Ebbert, A.J., Eichele, G., Estin, L.K., Faber, C., Facer, B.A., Fields, R., Fischer, S.R., Fliss, T.P., Frensley, C., Gates, S.N., Glattfelder, K.J., Halverson, K.R., Hart, M.R., Hohmann, J.G., Howell, M.P., Jeung, D.P., Johnson, R.A., Karr, P.T., Kawal, R., Kidney, J.M., Knapik, R.H., Kuan, C.L., Lake, J.H., Laramee, A.R., Larsen, K.D., Lau, C., Lemon, T.A., Liang, A.J., Liu, Y., Luong, L.T., Michaels, J., Morgan, J.J., Morgan, R.J., Mortrud, M.T., Mosqueda, N.F., Ng, L.L., Ng, R., Orta, G.J., Overly, C.C., Pak, T.H., Parry, S.E., Pathak, S.D., Pearson, O.C., Puchalski, R.B., Riley, Z.L., Rockett, H.R., Rowland, S.A., Royall, J.J., Ruiz, M.J., Sarno, N.R., Schaffnit, K., Shapovalova, N.V., Sivisay, T., Slaughterbeck, C.R., Smith, S.C., Smith, K.A., Smith, B.I., Sodt, A.J., Stewart, N.N., Stumpf, K.-R., Sunkin, S.M., Sutram, M., Tam, A., Teemer, C.D., Thaller, C., Thompson, C.L., Varnam, L.R., Visel, A., Whitlock, R.M., Wohnoutka, P.E., Wolkey, C.K., Wong, V.Y., Wood, M., Yaylaoglu, M.B., Young, R.C., Youngstrom, B.L., Feng Yuan, X., Zhang, B., Zwingman, T.A., Jones, A.R.,2007. Genome-wide atlas of gene expression in the adult mouse brain. Nature. 445:168–176.
[5]- Kim, J., Jeong, Y., 2013. Augmentation of sensory-evoked hemodynamic response in an early Alzheimer's disease mouse model. J Alzheimers Dis. 37(4):857-68.