The postnatal brain development at the macroscale in common marmoset has been studied based on the volume measurement, as is not well-studied despite its importance. Maximizing the feature that it takes only 2 years to reach adulthood, the longitudinal MRI was conducted for 23 subjects. The volume of gray matter was inverted U curve trajectories, while increase of white matter became stable around 12 months old. Developmental patterns of regions in cerebral cortex were similar to gray matter but different in developmental timing. The study can demonstrate overall growth patterns were similar to patterns previously reported in humans and other monkeys.
This research was supported by RIKEN Junior Research Associate Program.
This research is partially supported by the program for Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS) from Japan Agency for Medical Research and development, AMED.
1. Sasaki E, Suemizu H, Shimada A, et al. Generation of transgenic non-human primates with germline transmission. Nature. 2009;459(7246):523-527. doi:10.1038/nature08090.
2. Hikishima K, Ando K, Yano R, et al. Parkinson Disease: Diffusion MR Imaging to Detect Nigrostriatal Pathway Loss in a Marmoset Model Treated with 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Radiology. 2015;275(2):430-437. doi:10.1148/radiol.14140601.
3. Liu J V, Hirano Y, Nascimento GC, Stefanovic B, Leopold DA, Silva AC. fMRI in the awake marmoset: Somatosensory-evoked responses, functional connectivity, and comparison with propofol anesthesia. Neuroimage. 2013;78:186-195. doi:10.1016/j.neuroimage.2013.03.038.
4. Belcher AM, Yen CC, Stepp H, et al. Large-Scale Brain Networks in the Awake, Truly Resting Marmoset Monkey. J Neurosci. 2013;33(42):16796-16804. doi:10.1523/jneurosci.3146-13.2013.
5. Hung C-C, Yen CC, Ciuchta JL, et al. Functional Mapping of Face-Selective Regions in the Extrastriate Visual Cortex of the Marmoset. J Neurosci. 2015;35(3):1160-1172. doi:10.1523/JNEUROSCI.2659-14.2015.
6. Belcher AM, Yen CC-C, Notardonato L, et al. Functional Connectivity Hubs and Networks in the Awake Marmoset Brain. Front Integr Neurosci. 2016;10. doi:10.3389/fnint.2016.00009.
7. Hikishima K, Sawada K, Murayama AY, et al. Atlas of the developing brain of the marmoset monkey constructed using magnetic resonance histology. Neuroscience. 2013;230:102-113. doi:10.1016/j.neuroscience.2012.09.053.
8. Sawada K, Hikishima K, Murayama AY, Okano HJ, Sasaki E, Okano H. Fetal sulcation and gyrification in common marmosets (Callithrix jacchus) obtained by ex vivo magnetic resonance imaging. Neuroscience. 2014;257:158-174. doi:10.1016/j.neuroscience.2013.10.067.
9. Schultz-Darken N, Braun KM, Emborg ME. Neurobehavioral development of common marmoset monkeys. Dev Psychobiol. 2016;58(2):141-158. doi:10.1002/dev.21360.
10. Hashikawa T, Nakatomi R, Iriki A. Current models of the marmoset brain. Neurosci Res. 2015;93:116-127. doi:10.1016/j.neures.2015.01.009.
11. Vijayakumar N, Allen NB, Youssef G, et al. Brain development during adolescence: A mixed-longitudinal investigation of cortical thickness, surface area, and volume. Hum Brain Mapp. 2016;37(6):2027-2038. doi:10.1002/hbm.23154. 12. Giedd JN, Blumenthal J, Jeffries NO, et al. Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci. 1999;2(10):861-863.
12. Giedd JN, Blumenthal J, Jeffries NO, et al. Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci. 1999;2(10):861-863. doi:10.1038/13158.
13. Lenroot RK, Gogtay N, Greenstein DK, et al. Sexual dimorphism of brain developmental trajectories during childhood and adolescence. Neuroimage. 2007;36(4):1065-1073. doi:10.1016/j.neuroimage.2007.03.053.
14. Raznahan A, Shaw P, Lalonde F, et al. How Does Your Cortex Grow? J Neurosci. 2011;31(19):7174-7177. doi:10.1523/JNEUROSCI.0054-11.2011.
15. Liu C, Tian X, Liu H, et al. Rhesus monkey brain development during late infancy and the effect of phencyclidine: A longitudinal MRI and DTI study. Neuroimage. 2015;107:65-75. doi:10.1016/j.neuroimage.2014.11.056.
16. Scott J a., Grayson D, Fletcher E, et al. Longitudinal analysis of the developing rhesus monkey brain using magnetic resonance imaging: birth to adulthood. Brain Struct Funct. 2015;221(5):2847-2871. doi:10.1007/s00429-015-1076-x.
17. Malkova L, Heuer E, Saunders RC. Longitudinal magnetic resonance imaging study of rhesus monkey brain development. Eur J Neurosci. 2006;24(11):3204-3212. doi:10.1111/j.1460-9568.2006.05175.x.
18. Zhang J, Miller MI, Plachez C, et al. Mapping postnatal mouse brain development with diffusion tensor microimaging. Neuroimage. 2005;26(4):1042-1051. doi:10.1016/j.neuroimage.2005.03.009.
19. Chuang N, Mori S, Yamamoto A, et al. An MRI-based atlas and database of the developing mouse brain. Neuroimage. 2011;54(1):80-89. doi:10.1016/j.neuroimage.2010.07.043.
20. Lebel C, Beaulieu C. Longitudinal Development of Human Brain Wiring Continues from Childhood into Adulthood. J Neurosci. 2011;31(30):10937-10947. doi:10.1523/JNEUROSCI.5302-10.2011.
21. Aubert-Broche B, Fonov VS, García-Lorenzo D, et al. A new method for structural volume analysis of longitudinal brain MRI data and its application in studying the growth trajectories of anatomical brain structures in childhood. Neuroimage. 2013;82:393-402. doi:10.1016/j.neuroimage.2013.05.065.