In this work, we show that MR signal progression can be represented as an autonomous discrete linear dynamical system when the small angle approximation is made. This formalism can be used to determine an optimal set of flip angles to yield a desired magnetic state. We present an an example of maintaining a constant signal strength with a Fast Spin Echo sequence.
The nominal flip angles of a CPMG FSE sequence are:
α=(90x,180y,180y,180y,…,180y).
Our goal is to determine a vector Δα∈RM (where αj+Δαj is the angle of the jth 180y pulse) such that the signal is optimally retained throughout a fast spin echo sequence for a given t1,t2,T1, and T2. We make the following approximations: sin(Δαj)≈Δαj and cos(Δαj)≈1 for all j. The matrix representing a α+Δαy RF pulse becomes
Rα+Δα([F+nF−nZn])≈Rα[F+n+ΔαZnF−n+ΔαZn−Δα/2(F+n+F−n)+Zn]=Rα[F+nF−nZn]+ΔαRα[ZnZn−(F+n+F−n)/2].
As detailed in [2], the EPG states can be represented as
Qm(n)=CQ0(m,n)+m∑i=1C˜Q(m−i,n),
where Qm is a vector of the coefficients at time m>1, ˜Q is the magnetization due to recovery after a single TR, and Q0 is the magnetic state at the echo after the 90x pulse (when m=0). The value CQ(m,⋅) is defined as
CQ(m+1,n)=[e−t2/T2RTαm,1(e−t1/T2F+n−2,e−t1/T2F−n,e−t1/T1Zn−1)e−t2/T2RTαm,2(e−t1/T2F+n,e−t1/T2F−n+2,e−t1/T1Zn+1)e−t2/T1RTαm,3(e−t1/T2F+n−1,e−t1/T2F−n+1,e−t1/T1Zn)]⏟ACQ(m−1,n)+[e−t2/T2RTαm,1(e−t1/T1Zn−1,e−t1/T1Zn−1,−e−t1/T2(F+n−2+F−n)/2)e−t2/T2RTαm,2(e−t1/T1Zn+1,e−t1/T1Zn+1,−e−t1/T2(F+n+Fn+2)/2)e−t2/T1RTαm,3(e−t1/T1Zn,e−t1/T1Zn,−e−t1/T2(F+n−1+F−n+1)/2)]⏟BCQ(m−1,n)Δαm,
where Q represents the initial condition (CQ(0,n)=Q), RTα,j represents the jth row of Rα, and ⋅T represents transpose. The equation above is an ADLDS. Since Qm is a sum of C functions, it too is an ADLDS. At some final time M,
CQ(M,⋅)=AMCQ(0,⋅)+AM−1BCQ(0,⋅)(α1+Δα1)+AM−2BACQ(0,⋅)(α2Δα2)+AM−3BA2CQ(0,⋅)(α3+Δα3)+⋯+ABAM−2CQ(0,⋅)(αM−1+ΔαM−1)+BAM−1CQ(0,⋅)(αM+ΔαM).
where αiαj≈0 for any i,j. Combining the above equations,
1T[AM−1BQ0AM−2BAQ0AM−3BA2Q0⋯BAM−1Q0AM−2B˜QAM−3BA˜QBAM−2˜QAM−3B˜QBAM−3˜Q⋱⋮B˜Q]⏟H[IΔα1IΔα2IΔα3⋮IΔαM]=QD−1T[AMQ0−AM−1BQ0α1−AM−2BAQ0α2−⋯−BAM−1Q0αMAM−1˜Q−AM−2B˜Qα2−⋯−BAM−2˜QαMAM−2˜Q−⋯−BAM−3˜QαM⋮A˜Q−B˜QαM]⏟b
where 1 is a block vector with all values equal to I, and QD is a variable specifying the desired state. One can solve the following constrained least squares problem to find an optimal α that attains a specific desired end state QD:
minimize‖
where \theta is a small angle (e.g. pi/2, imposed so that the small angle approximation remains valid).
We use this formalism to determine an optimal \Delta\alpha that maintains a maximum signal strength through $J=30$ echoes of a fast spin echo sequence. Let \boldsymbol{H}_j be the matrix \boldsymbol{H} associated with the j^{\text{th}} echo. Then the optimal \Delta\alpha is determined by solving the following optimization problem:
\begin{align*} \text{minimize} & \hspace{8pt} \| \boldsymbol{H}_1 \alpha_{1} - \boldsymbol{b}_1 \|_{\mathbb{I}_{F_0^+},2} + \| \boldsymbol{H}_2 \alpha_{1:2} - \boldsymbol{b}_{1:2} \|_{\mathbb{I}_{F_0^+},2} + \cdots + \| \boldsymbol{H}_J \alpha_{1:J} - \boldsymbol{b}_{1:J} \|_{\mathbb{I}_{F_0^+},2} \\ \text{subject to} & \hspace{8pt} |\Delta\alpha| < \theta,\end{align*}
where each term in the objective function is a norm weighted by the indicator function of the F_0^+ element. This problem can be solved with the Fast Iterative Shrinkage Threshold Algorithm (FISTA) [3] or interior point methods.
Figure 1 compares the simulated signal strength for the nominal FSE CPMG sequence with 20 ms echo spacing to that using the altered flip angles. For this result, the desired signal strength was set to 1 for all echoes. The signal strength is retained for many more echoes.
ND is supported by the National Institute of Health's Grant Number T32EB009653 “Predoctoral Training in Biomedical Imaging at Stanford University”, the National Institute of Health's Grant Number NIH T32 HL007846, The Rose Hills Foundation Graduate Engineering Fellowship, the Electrical Engineering Department New Projects Graduate Fellowship, and The Oswald G. Villard Jr. Engineering Fellowship
[1] Matthias Weigel. Extended Phase Graphs: Dephasing, RF pulses, and Echoes - Pure and Simple. Journal of Magnetic Resonance Imaging, 41(2):266–295, 2015.
[2] Nicholas Dwork, Brian A. Hargreaves, and John M. Pauly. Using Cellular Automata to Represent MRI Signal Progression. In Proceedings of the International Society of Magnetic Resonance in Medicine, 2016.
[3] Amir Beck and Marc Teboulle. A Fast Iterative Shrinkage-thresholding Algorithm for Linear Inverse Problems. SIAM journal on imaging sciences, 2(1):183–202, 2009.