Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

1508

Sequence Design by Signal Inversion Using Extended Phase Graphs
Nicholas Dwork1 and John Pauly1

1Electrical Engineering, Stanford University, Stanford, CA, United States

Synopsis

In this work, we show that MR signal progression can be represented as an autonomous discrete linear dynamical system when the small angle approximation is made. This formalism can be used to determine an optimal set of flip angles to yield a desired magnetic state. We present an an example of maintaining a constant signal strength with a Fast Spin Echo sequence.

Purpose

We have previously shown that the signal progression of a Fast Spin Echo (FSE) sequence in the Extended Phase Graph domain (EPG) [1]can be represented as a sum of Cellular Automata [2]. This expression can be formed as a recursive function. In this document, we show that (when we make the small tip angle approximation) this recursion is an autonomous discrete linear dynamical system (ADLDS). If an initial condition and a desired end state are specified then the ADLDS can be rewritten as a linear system. This linear system can be solved to determine an optimal set of pulse parameters.

Theory

The nominal flip angles of a CPMG FSE sequence are:

α=(90x,180y,180y,180y,,180y).

Our goal is to determine a vector ΔαRM (where αj+Δαj is the angle of the jth 180y pulse) such that the signal is optimally retained throughout a fast spin echo sequence for a given t1,t2,T1, and T2. We make the following approximations: sin(Δαj)Δαj and cos(Δαj)1 for all j. The matrix representing a α+Δαy RF pulse becomes

Rα+Δα([F+nFnZn])Rα[F+n+ΔαZnFn+ΔαZnΔα/2(F+n+Fn)+Zn]=Rα[F+nFnZn]+ΔαRα[ZnZn(F+n+Fn)/2].

As detailed in [2], the EPG states can be represented as

Qm(n)=CQ0(m,n)+mi=1C˜Q(mi,n),

where Qm is a vector of the coefficients at time m>1, ˜Q is the magnetization due to recovery after a single TR, and Q0 is the magnetic state at the echo after the 90x pulse (when m=0). The value CQ(m,) is defined as

CQ(m+1,n)=[et2/T2RTαm,1(et1/T2F+n2,et1/T2Fn,et1/T1Zn1)et2/T2RTαm,2(et1/T2F+n,et1/T2Fn+2,et1/T1Zn+1)et2/T1RTαm,3(et1/T2F+n1,et1/T2Fn+1,et1/T1Zn)]ACQ(m1,n)+[et2/T2RTαm,1(et1/T1Zn1,et1/T1Zn1,et1/T2(F+n2+Fn)/2)et2/T2RTαm,2(et1/T1Zn+1,et1/T1Zn+1,et1/T2(F+n+Fn+2)/2)et2/T1RTαm,3(et1/T1Zn,et1/T1Zn,et1/T2(F+n1+Fn+1)/2)]BCQ(m1,n)Δαm,

where Q represents the initial condition (CQ(0,n)=Q), RTα,j represents the jth row of Rα, and T represents transpose. The equation above is an ADLDS. Since Qm is a sum of C functions, it too is an ADLDS. At some final time M,

CQ(M,)=AMCQ(0,)+AM1BCQ(0,)(α1+Δα1)+AM2BACQ(0,)(α2Δα2)+AM3BA2CQ(0,)(α3+Δα3)++ABAM2CQ(0,)(αM1+ΔαM1)+BAM1CQ(0,)(αM+ΔαM).

where αiαj0 for any i,j. Combining the above equations,

1T[AM1BQ0AM2BAQ0AM3BA2Q0BAM1Q0AM2B˜QAM3BA˜QBAM2˜QAM3B˜QBAM3˜QB˜Q]H[IΔα1IΔα2IΔα3IΔαM]=QD1T[AMQ0AM1BQ0α1AM2BAQ0α2BAM1Q0αMAM1˜QAM2B˜Qα2BAM2˜QαMAM2˜QBAM3˜QαMA˜QB˜QαM]b

where 1 is a block vector with all values equal to I, and QD is a variable specifying the desired state. One can solve the following constrained least squares problem to find an optimal α that attains a specific desired end state QD:

minimize

where \theta is a small angle (e.g. pi/2, imposed so that the small angle approximation remains valid).

Results

We use this formalism to determine an optimal \Delta\alpha that maintains a maximum signal strength through $J=30$ echoes of a fast spin echo sequence. Let \boldsymbol{H}_j be the matrix \boldsymbol{H} associated with the j^{\text{th}} echo. Then the optimal \Delta\alpha is determined by solving the following optimization problem:

\begin{align*} \text{minimize} & \hspace{8pt} \| \boldsymbol{H}_1 \alpha_{1} - \boldsymbol{b}_1 \|_{\mathbb{I}_{F_0^+},2} + \| \boldsymbol{H}_2 \alpha_{1:2} - \boldsymbol{b}_{1:2} \|_{\mathbb{I}_{F_0^+},2} + \cdots + \| \boldsymbol{H}_J \alpha_{1:J} - \boldsymbol{b}_{1:J} \|_{\mathbb{I}_{F_0^+},2} \\ \text{subject to} & \hspace{8pt} |\Delta\alpha| < \theta,\end{align*}

where each term in the objective function is a norm weighted by the indicator function of the F_0^+ element. This problem can be solved with the Fast Iterative Shrinkage Threshold Algorithm (FISTA) [3] or interior point methods.

Figure 1 compares the simulated signal strength for the nominal FSE CPMG sequence with 20 ms echo spacing to that using the altered flip angles. For this result, the desired signal strength was set to 1 for all echoes. The signal strength is retained for many more echoes.

Discussion

This approach can be generalized to other sequences (not just FSE), which we will do as future work.

Acknowledgements

ND is supported by the National Institute of Health's Grant Number T32EB009653 “Predoctoral Training in Biomedical Imaging at Stanford University”, the National Institute of Health's Grant Number NIH T32 HL007846, The Rose Hills Foundation Graduate Engineering Fellowship, the Electrical Engineering Department New Projects Graduate Fellowship, and The Oswald G. Villard Jr. Engineering Fellowship

References

[1] Matthias Weigel. Extended Phase Graphs: Dephasing, RF pulses, and Echoes - Pure and Simple. Journal of Magnetic Resonance Imaging, 41(2):266–295, 2015.

[2] Nicholas Dwork, Brian A. Hargreaves, and John M. Pauly. Using Cellular Automata to Represent MRI Signal Progression. In Proceedings of the International Society of Magnetic Resonance in Medicine, 2016.

[3] Amir Beck and Marc Teboulle. A Fast Iterative Shrinkage-thresholding Algorithm for Linear Inverse Problems. SIAM journal on imaging sciences, 2(1):183–202, 2009.

Figures

Signal strength (including relaxation) for CPMG with altered and nominal flip angles.

Proc. Intl. Soc. Mag. Reson. Med. 25 (2017)
1508