We investigated the capability of advanced diffusion MRI, including high-angular resolution diffusion MRI (HARDI) and oscillating gradient diffusion MRI, to characterize cortical microstructural organization in the embryonic mouse brains. HARDI-based tractography revealed reduced axons in the intermediate zone of the embryonic cortex in the Sas-4-/-;p53-/- mice compared to the wildtypes. The oscillating gradient diffusion MRI delineated a three-lamina structure in the cortex of the normal embryonic brain, reflecting the neuronal cell distributions during embryonic brain development, which was altered by mislocalized RGPs in extra-ventricular zone, resulting in diminished contrast in the mutant cortex.
Directionally-encoded-colormap (DEC) (Fig. 1A) showed three distinct layers in the E15.5 WT mouse cortex (the cortical plate (CP), intermediate zone (IZ), and ventricular zone (VZ)). The IZ, which contains axons running parallel to the cortical surface as visualized in the TDI map (Fig. 1B), had high AFD values compared to VZ and CP. Images from the E15.5 Sas-4-/-;p53-/- mouse brain showed reduced AFD values in the IZ and VZ, reduced FA in the VZ (Fig. 1C), and less fiber streamlines in the IZ than the WT mouse brain, suggesting reduced number of axons in this region.
The CP, IZ, and VZ were also visible in the PGSE and OGSE ADC maps of the WT E15.5 mouse brain (Fig. 2A). The ΔfADC map of the WT mouse brain showed lower ΔfADC values in the IZ than the CP and VZ, which agreed well with the DAPI staining (Fig. 2B) that had low cell concentration in the IZ. The contrasts in both ADC and ΔfADC maps for these layers were attenuated in the Sas-4-/-;p53-/- mouse brain (Fig. 2A), due to significantly increased ΔfADC values in the IZ than the WT (p<0.01) (Fig. 2C). This change is possibly due to disrupted cortical organization at E15.5, marked by the ectopic radial glial progenitors (RGPs, labeled by PAX6) outside the ventricular zone (VZ) and into the IZ14 (Fig. 2B).
1. Mori, S. & Zhang, J. Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 51, 527-539, doi:10.1016/j.neuron.2006.08.012 (2006).
2. Zhang, J. et al. Three-dimensional anatomical characterization of the developing mouse brain by diffusion tensor microimaging. Neuroimage 20, 1639-1648 (2003).
3. Tuch, D. S., Reese, T. G., Wiegell, M. R. & Wedeen, V. J. Diffusion MRI of complex neural architecture. Neuron 40, 885-895 (2003).
4. Aggarwal, M., Gobius, I., Richards, L. J. & Mori, S. Diffusion MR Microscopy of Cortical Development in the Mouse Embryo. Cereb Cortex 25, 1970-1980, doi:10.1093/cercor/bhu006 (2015).
5. Gore, J. C. et al. Characterization of tissue structure at varying length scales using temporal diffusion spectroscopy. NMR in biomedicine 23, 745-756, doi:10.1002/nbm.1531 (2010).
6. Portnoy, S., Fichtner, N. D., Dziegielewski, C., Stanisz, M. P. & Stanisz, G. J. In vitro detection of apoptosis using oscillating and pulsed gradient diffusion magnetic resonance imaging. NMR in biomedicine 27, 371-380, doi:10.1002/nbm.3070 (2014).
7. Xu, J., Does, M. D. & Gore, J. C. Quantitative characterization of tissue microstructure with temporal diffusion spectroscopy. J Magn Reson 200, 189-197, doi:10.1016/j.jmr.2009.06.022 (2009).
8. Xu, J., Does, M. D. & Gore, J. C. Dependence of temporal diffusion spectra on microstructural properties of biological tissues. Magn Reson Imaging 29, 380-390, doi:10.1016/j.mri.2010.10.002 (2011).
9. Xu, J. et al. Characterizing tumor response to chemotherapy at various length scales using temporal diffusion spectroscopy. PLoS One 7, e41714, doi:10.1371/journal.pone.0041714 (2012).
10. Xu, J. et al. Influence of cell cycle phase on apparent diffusion coefficient in synchronized cells detected using temporal diffusion spectroscopy. Magn Reson Med 65, 920-926, doi:10.1002/mrm.22704 (2011).
11. Aggarwal, M., Burnsed, J., Martin, L. J., Northington, F. J. & Zhang, J. Imaging neurodegeneration in the mouse hippocampus after neonatal hypoxia-ischemia using oscillating gradient diffusion MRI. Magn Reson Med 72, 829-840, doi:10.1002/mrm.24956 (2014).
12. Aggarwal, M., Jones, M. V., Calabresi, P. A., Mori, S. & Zhang, J. Probing mouse brain microstructure using oscillating gradient diffusion MRI. Magn Reson Med 67, 98-109, doi:10.1002/mrm.22981 (2012).
13. Wu, D., Martin, L. J., Northington, F. J. & Zhang, J. Oscillating gradient diffusion MRI reveals unique microstructural information in normal and hypoxia-ischemia injured mouse brains. Magn Reson Med 72, 1366-1374, doi:10.1002/mrm.25441 (2014).
14. Insolera, R., Bazzi, H., Shao, W., Anderson, K. V. & Shi, S. H. Cortical neurogenesis in the absence of centrioles. Nature Neuroscience 17, 1528-1535, doi:10.1038/nn.3831 (2014).
15. Wu, D. et al. In vivo high-resolution diffusion tensor imaging of the mouse brain. Neuroimage 83, 18-26, doi:10.1016/j.neuroimage.2013.06.012 (2013).
16. Tournier, J. D., Calamante, F. & Connelly, A. Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. Neuroimage 35, 1459-1472, doi:10.1016/j.neuroimage.2007.02.016 (2007).
17. Calamante, F. et al. Super-resolution track-density imaging studies of mouse brain: Comparison to histology. NeuroImage 59, 286-296, doi:10.1016/j.neuroimage.2011.07.014 (2012).
18. Raffelt, D. et al. Apparent Fibre Density: A novel measure for the analysis of diffusion-weighted magnetic resonance images. NeuroImage 59, 3976-3994, doi:10.1016/j.neuroimage.2011.10.045 (2012).