The purpose of our study was to evaluate the relationship between glial activation assessed by [11C]-PBR28 positron emission tomography, and neuronal integrity and gliosis/neuroinflammation measured by magnetic resonance spectroscopy in people with amyotrophic lateral sclerosis (ALS). Glial activation measured by increased [11C]-PBR28 uptake correlated with increased levels of myo-Inositol/Creatine, a spectroscopic marker of gliosis/neuroinflammation in the brain stem and motor cortices. Furthermore, increased [11C]-PBR28 uptake correlated with neuronal damage measured by decreased N-acetylaspartate/Creatine levels. To our knowledge, this is the first study to evaluate the relationship between glial activation, measured by [11C]-PBR28 PET, and brain metabolites assessed by MRS.
1. Foerster, B.R., R.C. Welsh, and E.L. Feldman, 25 years of neuroimaging in amyotrophic lateral sclerosis. Nat Rev Neurol, 2013. 9(9): p. 513-24.
2. Turner, M.R. and M. Modo, Advances in the application of MRI to amyotrophic lateral sclerosis. Expert Opin Med Diagn, 2010. 4(6): p. 483-496.
3. Rocha, A.J. and A.C. Maia Junior, Is magnetic resonance imaging a plausible biomarker for upper motor neuron degeneration in amyotrophic lateral sclerosis/primary lateral sclerosis or merely a useful paraclinical tool to exclude mimic syndromes? A critical review of imaging applicability in clinical routine. Arq Neuropsiquiatr, 2012. 70(7): p. 532-9.
4. Wang, S., et al., Neuroimaging in amyotrophic lateral sclerosis. Neurotherapeutics, 2011. 8(1): p. 63-71.
5. Kaufmann, P. and H. Mitsumoto, Amyotrophic lateral sclerosis: objective upper motor neuron markers. Curr Neurol Neurosci Rep, 2002. 2(1): p. 55-60.
6. Bradley, W.G., et al., 1H-magnetic resonance spectroscopy in amyotrophic lateral sclerosis. J Neurol Sci, 1999. 169(1-2): p. 84-6.
7. Pohl, C., et al., Proton magnetic resonance spectroscopy of the motor cortex in 70 patients with amyotrophic lateral sclerosis. Arch Neurol, 2001. 58(5): p. 729-35.
8. Mitsumoto, H., et al., Quantitative objective markers for upper and lower motor neuron dysfunction in ALS. Neurology, 2007. 68(17): p. 1402-10.
9. Pioro, E.P., et al., 1H-MRS evidence of neurodegeneration and excess glutamate + glutamine in ALS medulla. Neurology, 1999. 53(1): p. 71-9.
10. Bowen, B.C., et al., MR imaging and localized proton spectroscopy of the precentral gyrus in amyotrophic lateral sclerosis. AJNR Am J Neuroradiol, 2000. 21(4): p. 647-58.
11. Schuff, N., et al., Reanalysis of multislice (1)H MRSI in amyotrophic lateral sclerosis. Magn Reson Med, 2001. 45(3): p. 513-6.
12. Wang, S., et al., Amyotrophic lateral sclerosis: diffusion-tensor and chemical shift MR imaging at 3.0 T. Radiology, 2006. 239(3): p. 831-8.
13. Verma, G., et al., Whole-brain analysis of amyotrophic lateral sclerosis by using echo-planar spectroscopic imaging. Radiology, 2013. 267(3): p. 851-7.
14. Sivak, S., et al., Proton magnetic resonance spectroscopy in patients with early stages of amyotrophic lateral sclerosis. Neuroradiology, 2010. 52(12): p. 1079-85.
15. Unrath, A., A.C. Ludolph, and J. Kassubek, Brain metabolites in definite amyotrophic lateral sclerosis. A longitudinal proton magnetic resonance spectroscopy study. J Neurol, 2007. 254(8): p. 1099-106.
16. Rule, R.R., et al., Reduced NAA in motor and non-motor brain regions in amyotrophic lateral sclerosis: a cross-sectional and longitudinal study. Amyotroph Lateral Scler Other Motor Neuron Disord, 2004. 5(3): p. 141-9.
17. Lombardo, F., et al., Diffusion tensor MRI and MR spectroscopy in long lasting upper motor neuron involvement in amyotrophic lateral sclerosis. Arch Ital Biol, 2009. 147(3): p. 69-82.
18. Kalra, S., et al., Detection of cerebral degeneration in amyotrophic lateral sclerosis using high-field magnetic resonance spectroscopy. Arch Neurol, 2006. 63(8): p. 1144-8.
19. Block, W., et al., Proton magnetic resonance spectroscopy of the primary motor cortex in patients with motor neuron disease: subgroup analysis and follow-up measurements. Arch Neurol, 1998. 55(7): p. 931-6.
20. Pioro, E.P., et al., Detection of cortical neuron loss in motor neuron disease by proton magnetic resonance spectroscopic imaging in vivo. Neurology, 1994. 44(10): p. 1933-8.
21. Zurcher, N.R., et al., Increased in vivo glial activation in patients with amyotrophic lateral sclerosis: assessed with [(11)C]-PBR28. Neuroimage Clin, 2015. 7: p. 409-14.
22. Turner, M.R., et al., Evidence of widespread cerebral microglial activation in amyotrophic lateral sclerosis: an [11C](R)-PK11195 positron emission tomography study. Neurobiol Dis, 2004. 15(3): p. 601-9.
23. Johansson, A., et al., Evidence for astrocytosis in ALS demonstrated by [11C](L)-deprenyl-D2 PET. J Neurol Sci, 2007. 255(1-2): p. 17-22.
24. Corcia, P., et al., Molecular imaging of microglial activation in amyotrophic lateral sclerosis. PLoS One, 2012. 7(12): p. e52941.
25. Izquierdo-Garcia, D., et al., An SPM8-based approach for attenuation correction combining segmentation and nonrigid template formation: application to simultaneous PET/MR brain imaging. J Nucl Med, 2014. 55(11): p. 1825-30.
26. Loggia, M.L., et al., Evidence for brain glial activation in chronic pain patients. Brain, 2015. 138(Pt 3): p. 604-15.
27. Owen, D.R., et al., An 18-kDa translocator protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28. J Cereb Blood Flow Metab, 2012. 32(1): p. 1-5.
Figure 1. Top: [11C]-PBR28 SUVR maps for the ALS patients who participated in this study.
Bottom, Left: Pearson correlations between glial activation, represented by [11C]-PBR28 uptake and inflammation represented by myo-Inositol/Creatine (mI/Cr) in the left motor cortex (L MC).
Bottom Right: Pearson correlations between glial activation, represented by [11C]-PBR28 uptake and neuronal injury represented by a decline in N-acetylaspartate/Creatine (NAA/Cr) in the left motor cortex (L MC)