The oldest contrast mechanism that has been proposed for bloodless fMRI is also perhaps the simplest one to understand conceptually: associated with any electric current, such as a neuronal one, is an accompanying magnetic field (from Ampère’s law or the Biot-Savart law). The z-component of this neuronal magnetic field (i.e., the component along the main magnetic field B0), will alter the Larmor precession frequency of spins experiencing this field, resulting in a change in the phase of the net transverse magnetization vector within a voxel or a reduction in the magnitude of this vector (due to intra-voxel dephasing), or possibly both, depending on the spatial pattern of the neuronal magnetic field. This mechanism, most commonly referred to as neuronal-current MRI or ncMRI (Bandettini et al., 2005, Hagberg et al., 2006), but also as magnetic-source MRI or msMRI (Xiong et al., 2003), Direct-MR Neuronal Detection or DND (Chow et al., 2008), etc., has been clearly demonstrated in electric-current phantoms (Bodurka et al., 1999, Bodurka and Bandettini, 2002, Pell et al., 2006).
The first attempt to use this contrast mechanism to detect neuronal currents in the human brain was over two decades ago, and was a negative result (Singh, 1994). Since then, several groups have reported positive results on the detection of neuronal currents in humans (Kamei et al., 1999, Xiong et al., 2003, Bianciardi et al., 2004, Konn et al., 2004, Liston et al., 2004, Chow et al., 2006, Chow et al., 2007, Chow et al., 2008, Sundaram et al., 2010). These results, however, conflict with published reports of negative findings (Chu et al., 2004, Parkes et al., 2007, Mandelkow et al., 2007, Tang et al., 2008, Rodionov et al., 2010, Luo et al., 2011b, Huang, 2014) as well as theoretical arguments (i.e., based on modeling and simulations) against the feasibility of detecting these signals using present-day MRI technology (Cassara et al., 2008, Luo et al., 2011a, Jay et al., 2012).
References
Andrew, R. D. and Macvicar, B. A. 1994. Imaging cell volume changes and neuronal excitation in the hippocampal slice. Neuroscience, 62, 371-83.
Aso, T., Urayama, S., Poupon, C., Sawamoto, N., Fukuyama, H. and Le Bihan, D. 2009. An intrinsic diffusion response function for analyzing diffusion functional MRI time series. Neuroimage, 47, 1487-95.
Autio, J. A., Kershaw, J., Shibata, S., Obata, T., Kanno, I. and Aoki, I. 2011. High b-value diffusion-weighted fMRI in a rat forepaw electrostimulation model at 7 T. Neuroimage, 57, 140-8.
Balasubramanian, M., Mulkern, R. V., Wells, W. M., Sundaram, P. and Orbach, D. B. 2015. Magnetic resonance imaging of ionic currents in solution: the effect of magnetohydrodynamic flow. Magn Reson Med, 74, 1145-55.
Bandettini, P. A., Petridou, N. and Bodurka, J. 2005. Direct detection of neuronal activity with MRI: Fantasy, possibility, or reality? Applied Magnetic Resonance, 29, 65-88.
Bianciardi, M., Di Russo, F., Aprile, T., Maraviglia, B. and Hagberg, G. E. 2004. Combination of BOLD-fMRI and VEP recordings for spin-echo MRI detection of primary magnetic effects caused by neuronal currents. Magn Reson Imaging, 22, 1429-40.
Bodurka, J. and Bandettini, P. A. 2002. Toward direct mapping of neuronal activity: MRI detection of ultraweak, transient magnetic field changes. Magn Reson Med, 47, 1052-8.
Bodurka, J., Jesmanowicz, A., Hyde, J. S., Xu, H., Estkowski, L. and Li, S. J. 1999. Current-induced magnetic resonance phase imaging. J Magn Reson, 137, 265-71.
Cassara, A. M., Hagberg, G. E., Bianciardi, M., Migliore, M. and Maraviglia, B. 2008. Realistic simulations of neuronal activity: a contribution to the debate on direct detection of neuronal currents by MRI. Neuroimage, 39, 87-106.
Cassara, A. M. and Maraviglia, B. 2008. Microscopic investigation of the resonant mechanism for the implementation of nc-MRI at ultra-low field MRI. Neuroimage, 41, 1228-41.
Cassara, A. M., Maraviglia, B., Hartwig, S., Trahms, L. and Burghoff, M. 2009. Neuronal current detection with low-field magnetic resonance: simulations and methods. Magn Reson Imaging, 27, 1131-9.
Chow, L. S., Cook, G. G., Whitby, E. and Paley, M. N. 2006. Investigation of MR signal modulation due to magnetic fields from neuronal currents in the adult human optic nerve and visual cortex. Magn Reson Imaging, 24, 681-91.
Chow, L. S., Cook, G. G., Whitby, E. and Paley, M. N. 2007. Investigation of axonal magnetic fields in the human corpus callosum using visual stimulation based on MR signal modulation. J Magn Reson Imaging, 26, 265-73.
Chow, L. S., Dagens, A., Fu, Y., Cook, G. G. and Paley, M. N. 2008. Comparison of BOLD and direct-MR neuronal detection (DND) in the human visual cortex at 3T. Magn Reson Med, 60, 1147-54.
Chu, R., De Zwart, J. A., Van Gelderen, P., Fukunaga, M., Kellman, P., Holroyd, T. and Duyn, J. H. 2004. Hunting for neuronal currents: absence of rapid MRI signal changes during visual-evoked response. Neuroimage, 23, 1059-67.
Crick, F. 1982. Do dendritic spines twitch? Trends in Neurosciences, 5, 44-46.
Darquie, A., Poline, J. B., Poupon, C., Saint-Jalmes, H. and Le Bihan, D. 2001. Transient decrease in water diffusion observed in human occipital cortex during visual stimulation. Proc Natl Acad Sci U S A, 98, 9391-5.
De Luca, F. 2011. Direct fMRI by random spin-lock along the neural field. Magn Reson Imaging, 29, 951-7.
Espy, M., Matlashov, A. and Volegov, P. 2013. SQUID-detected ultra-low field MRI. J Magn Reson, 229, 127-41.
Fukushima, E. and Roeder, S. B. W. 1981. Experimental pulse NMR : a nuts and bolts approach, Reading, Mass., Addison-Wesley Pub. Co., Advanced Book Program.
Hagberg, G. E., Bianciardi, M. and Maraviglia, B. 2006. Challenges for detection of neuronal currents by MRI. Magn Reson Imaging, 24, 483-93.
Halpain, S. 2000. Actin and the agile spine: how and why do dendritic spines dance? Trends in Neurosciences, 23, 141-146.
Halpern-Manners, N. W., Bajaj, V. S., Teisseyre, T. Z. and Pines, A. 2010. Magnetic resonance imaging of oscillating electrical currents. Proc Natl Acad Sci U S A, 107, 8519-24.
Hilschenz, I., Korber, R., Scheer, H. J., Fedele, T., Albrecht, H. H., Mario Cassara, A., Hartwig, S., Trahms, L., Haase, J. and Burghoff, M. 2013. Magnetic resonance imaging at frequencies below 1 kHz. Magn Reson Imaging, 31, 171-7.
Hofner, N., Albrecht, H. H., Cassara, A. M., Curio, G., Hartwig, S., Haueisen, J., Hilschenz, I., Korber, R., Martens, S., Scheer, H. J., Voigt, J., Trahms, L. and Burghoff, M. 2011. Are brain currents detectable by means of low-field NMR? A phantom study. Magn Reson Imaging, 29, 1365-73.
Holthoff, K. and Witte, O. W. 1996. Intrinsic optical signals in rat neocortical slices measured with near-infrared dark-field microscopy reveal changes in extracellular space. J Neurosci, 16, 2740-9.
Huang, J. 2014. Detecting neuronal currents with MRI: a human study. Magn Reson Med, 71, 756-62.
Jackson, J. D. 1975. Classical electrodynamics, New York, Wiley.
Jasanoff, A. 2007. Bloodless FMRI. Trends Neurosci, 30, 603-10.
Jay, W. I., Wijesinghe, R. S., Dolasinski, B. D. and Roth, B. J. 2012. Is it possible to detect dendrite currents using presently available magnetic resonance imaging techniques? Med Biol Eng Comput, 50, 651-7.
Jiang, X., Sheng, J., Li, H., Chai, Y., Zhou, X., Wu, B., Guo, X. and Gao, J. H. 2016. Detection of subnanotesla oscillatory magnetic fields using MRI. Magn Reson Med, 75, 519-26.
Jin, T. and Kim, S. G. 2008. Functional changes of apparent diffusion coefficient during visual stimulation investigated by diffusion-weighted gradient-echo fMRI. Neuroimage, 41, 801-12.
Kamei, H., Iramina, K., Yoshikawa, K. and Ueno, S. 1999. Neuronal current distribution imaging using magnetic resonance. IEEE Transactions on Magnetics, 35, 4109-4111.
Kershaw, J., Tomiyasu, M., Kashikura, K., Hirano, Y., Nonaka, H., Hirano, M., Ikehira, H., Kanno, I. and Obata, T. 2009. A multi-compartmental SE-BOLD interpretation for stimulus-related signal changes in diffusion-weighted functional MRI. NMR Biomed, 22, 770-8.
Konn, D., Leach, S., Gowland, P. and Bowtell, R. 2004. Initial attempts at directly detecting alpha wave activity in the brain using MRI. Magn Reson Imaging, 22, 1413-27.
Kraus, R. H., Jr., Volegov, P., Matlachov, A. and Espy, M. 2008. Toward direct neural current imaging by resonant mechanisms at ultra-low field. Neuroimage, 39, 310-7.
Le Bihan, D. 2012. Diffusion, confusion and functional MRI. Neuroimage, 62, 1131-6.
Le Bihan, D., Urayama, S., Aso, T., Hanakawa, T. and Fukuyama, H. 2006. Direct and fast detection of neuronal activation in the human brain with diffusion MRI. Proc Natl Acad Sci U S A, 103, 8263-8.
Liston, A. D., Salek-Haddadi, A., Kiebel, S. J., Hamandi, K., Turner, R. and Lemieux, L. 2004. The MR detection of neuronal depolarization during 3-Hz spike-and-wave complexes in generalized epilepsy. Magn Reson Imaging, 22, 1441-4.
Luo, Q., Jiang, X., Chen, B., Zhu, Y. and Gao, J. H. 2011a. Modeling neuronal current MRI signal with human neuron. Magn Reson Med, 65, 1680-9.
Luo, Q., Jiang, X. and Gao, J. H. 2011b. Detection of neuronal current MRI in human without BOLD contamination. Magn Reson Med, 66, 492-7.
Mandelkow, H., Halder, P., Brandeis, D., Soellinger, M., De Zanche, N., Luechinger, R. and Boesiger, P. 2007. Heart beats brain: The problem of detecting alpha waves by neuronal current imaging in joint EEG-MRI experiments. Neuroimage, 37, 149-63.
Miller, K. L., Bulte, D. P., Devlin, H., Robson, M. D., Wise, R. G., Woolrich, M. W., Jezzard, P. and Behrens, T. E. 2007. Evidence for a vascular contribution to diffusion FMRI at high b value. Proc Natl Acad Sci U S A, 104, 20967-72.
Parkes, L. M., De Lange, F. P., Fries, P., Toni, I. and Norris, D. G. 2007. Inability to directly detect magnetic field changes associated with neuronal activity. Magn Reson Med, 57, 411-6.
Pell, G. S., Abbott, D. F., Fleming, S. W., Prichard, J. W. and Jackson, G. D. 2006. Further steps toward direct magnetic resonance (MR) imaging detection of neural action currents: optimization of MR sensitivity to transient and weak currents in a conductor. Magn Reson Med, 55, 1038-46.
Pourtaheri, N., Truong, T. K. and Henriquez, C. S. 2013. Electromagnetohydrodynamic modeling of Lorentz effect imaging. J Magn Reson, 236, 57-65.
Rodionov, R., Siniatchkin, M., Michel, C. M., Liston, A. D., Thornton, R., Guye, M., Carmichael, D. W. and Lemieux, L. 2010. Looking for neuronal currents using MRI: an EEG-fMRI investigation of fast MR signal changes time-locked to frequent focal epileptic discharges. Neuroimage, 50, 1109-17.
Roth, B. J. and Basser, P. J. 2009. Mechanical model of neural tissue displacement during Lorentz effect imaging. Magn Reson Med, 61, 59-64.
Singh, M. 1994. Sensitivity of MR phase shift to detect evoked neuromagnetic fields inside the head. IEEE Transactions on Nuclear Science, 41, 349-351.
Song, A. W. and Takahashi, A. M. 2001. Lorentz effect imaging. Magn Reson Imaging, 19, 763-7.
Sundaram, P., Wells, W. M., Mulkern, R. V., Bubrick, E. J., Bromfield, E. B., Munch, M. and Orbach, D. B. 2010. Fast human brain magnetic resonance responses associated with epileptiform spikes. Magn Reson Med, 64, 1728-38.
Takagi, S., Obata, K. and Tsubokawa, H. 2002. GABAergic input contributes to activity-dependent change in cell volume in the hippocampal CA1 region. Neurosci Res, 44, 315-24.
Tang, L., Avison, M. J., Gatenby, J. C. and Gore, J. C. 2008. Failure to direct detect magnetic field dephasing corresponding to ERP generation. Magn Reson Imaging, 26, 484-9.
Tasaki, I. 1999. Rapid structural changes in nerve fibers and cells associated with their excitation processes. Jpn J Physiol, 49, 125-38.
Tasaki, I., Nakaye, T. and Byrne, P. M. 1985. Rapid swelling of neurons during synaptic transmission in the bullfrog sympathetic ganglion. Brain Res, 331, 363-5.
Truong, T. K., Avram, A. and Song, A. W. 2008. Lorentz effect imaging of ionic currents in solution. J Magn Reson, 191, 93-9.
Truong, T. K. and Song, A. W. 2006. Finding neuroelectric activity under magnetic-field oscillations (NAMO) with magnetic resonance imaging in vivo. Proc Natl Acad Sci U S A, 103, 12598-601.
Truong, T. K., Wilbur, J. L. and Song, A. W. 2006. Synchronized detection of minute electrical currents with MRI using Lorentz effect imaging. J Magn Reson, 179, 85-91.
Wijesinghe, R. S. and Roth, B. J. 2010. Lorentz effect imaging of ionic currents in solution using correct values for ion mobility. J Magn Reson, 204, 225-7.
Witzel, T., Lin, F. H., Rosen, B. R. and Wald, L. L. 2008. Stimulus-induced Rotary Saturation (SIRS): a potential method for the detection of neuronal currents with MRI. Neuroimage, 42, 1357-65.
Xiong, J., Fox, P. T. and Gao, J. H. 2003. Directly mapping magnetic field effects of neuronal activity by magnetic resonance imaging. Hum Brain Mapp, 20, 41-9.
Yacoub, E., Uludag, K., Ugurbil, K. and Harel, N. 2008. Decreases in ADC observed in tissue areas during activation in the cat visual cortex at 9.4 T using high diffusion sensitization. Magn Reson Imaging, 26, 889-96.