Magnetic resonance is a major imaging modality
in the diagnosis of cancer. In clinical practice MR is commonly used to obtain
anatomical information, but the great versatility of the technique offers many
possibilities to acquire physiologic or metabolic information. To increase the
specificity and sensitivity of conventional MRI, essentially searching for
anatomical abnormalities, these functional approaches are increasingly being
included in clinical examinations of patients with tumors. For instance, perfusion
weighted imaging (PWI) to assess vascular functionality, diffusion weighted
imaging (DWI) to assess tissue characteristics associated with water movement
or MR spectroscopy (MRS) to assess tissue metabolism and physiology.
In metabolomics MR spectra are also obtained of ex-vivo tumor
tissues (biopsies) by high resolution Magic Angle Spectroscopy (hrMAS) or of
body fluids or tissue extracts of cancer patients by high resolution NMR. These
methods are not the scope of this paper, which focuses on in vivo MRS.
One of the first applications to a patient with
a tumor was the detection of an abnormal 31P MR spectrum of a
rhabdosarcoma as compared to that of adjacent muscle1. A typical tumor feature was the
relatively high level of the so-called phosphomonoester peak, which contains signals
from phosphorylated choline and ethanolamine2. When 1H MRS was applied
to patients with brain tumors a relatively high signal was observed for a peak
at about 3.2 ppm on the MRS chemical shift scale3. From NMR studies of biopsy
extracts this peak turned out to be mainly composed of the resonances
originating from protons in methyl groups of “choline compounds” such as
choline, phospho-choline and glycerophophocholine of which the 1H
chemical shift dispersion is too small to be resolved in the in vivo spectrum.
MRS studies of other human tumors also revealed the presence of relatively high
levels of choline compounds, which attracted much attention as it could serve
as a potential biomarker in cancer diagnosis (detection, grading and staging)
and treatment response2, 4.
MRS of human tumors also has uncovered abnormal tissue levels of other
metabolites reflecting changes in metabolism, morphology or physiology. Several
of these metabolites are specific for the tissue from which the tumor
originates, but abnormal levels are generally not specific for tumor growth
only and may occur in other pathologies. However, a typical composition of several
metabolite resonances together, in a metabolic profile, may be characteristic
for a particular tumor growth.
Optimal signal to noise ratios (SNR)
and chemical shift dispersion with well resolved resonances are important
aspects of a successful clinical 1H MRS examination. As both
increase with field strength, 1H MRS at the highest possible field
strength seems desirable and hence the use of 3T MR systems, which is the
highest field strength commonly available in the clinic, is widely advocated
for this purpose. In addition 7T MR systems are being increasingly applied in
clinical applications. The improved performance
of higher field systems sometimes may be disappointingly low because of
practical problems occurring at these fields such as increased chemical shift
dispersion error, shorter T2 values of 1H spin systems, increased B1variation
in the body and more susceptibility problems. Various approaches are being used
to overcome some of these problems, in particular for brain applications8,9.
At higher field the correction of
susceptibility variations (shimming) may be a major challenge for some body
parts and failure to address this properly will impact on the robustness of 1H
MRS examinations in the clinic.
To measure viable tumor tissue by single
voxel spectroscopy (SVS) the voxel (typically with a volume between 1 and 8 cc)
is positioned by MRI guidance using T1 and T2 weighted images. As these images may
be non-specific for the presence of tumor tissue often also a T1 weighted MRI
is obtained after intravenous application of a contrast agent containing
Gadolinium (Gd), to detect areas with abnormal vascularity, representing active
growing tumor cores. For instance, in the brain the blood brain barrier (BBB)
may be disrupted by tumor growth thus causing signal enhancement in T1-weighted
MRI as Gd can spread in the interstitial space after its intravenous
application. Assuming that these enhancing areas contain the viable part of the
tumor, the placement of voxels for SVS is then guided by hyperintense areas on
Gd enhanced MR images. MRS signals may be affected by the presence of Gd if the
MRS measurement is performed shortly after contrast application13, but at short echo times the
effects on spectral signals are usually acceptable. A more serious drawback of
this approach is that enhancement may not occur despite the presence of tumor,
for instance because of co-opting tumor growth14, or signal enhancement may be
rather non-specific, requiring detailed analysis of time dependent uptake of
the contrast agent to identify tumor presence, such as done in the prostate15. Moreover, tumor vascularity may
“normalize” during treatment16 and assessment with Gd enhanced MRI
may give the false impression that the tumor has disappeared. A way to
circumvent ambiguities in volume selection is to use a multi-voxel or MR spectroscopic
imaging (MRSI) approach, by which usually a large volume is selected also
covering non-tumor tissue, which is divided up in smaller voxels by phase/frequency
encoding methods, with volumes typically ~ 0.5 cc or more. For each metabolite
a 2 or 3D spatial map can be reconstructed from signals in spectra of each
voxel. In this way also the heterogeneous nature of tumors (necrosis, viable
tumor tissue etc.) can be assessed. A 3D acquisition will give the best tissue
coverage, for instance as used for the prostate10. For larger objects, as the whole
brain, conventional 3D acquisition may be too time consuming and faster
alternatives at higher fields are explored for clinical practice17.
A thorough description of the
technical details of various acquisition methods is beyond the scope of this paper,
but some aspects relevant to 1H MRS of cancer will be addressed
below.
In the clinical assessment of brain
tumors the application SVS is quick and easy, but with MRSI it is possible to
obtain clinically relevant spatial information of metabolite distributions. For
instance, the use of MRSI for spatial mapping and the analysis of resonances of
multiple compounds may help to determine the grade of glial tumors20. Information on the heterogeneous
nature of brain tumors is also important for biopsy guidance and for the
planning, monitoring and evaluation of treatments, such as surgery,
radiotherapy and chemotherapy. These procedures are commonly based on T2
weighted and Gd enhanced T1 weighted MR images. Therefore, it is of particular
importance that MRS can show gross abnormalities outside Gd enhancing and T2
lesions, as commonly occurring in
gliomas21. MRS can help in stereotactic
procedures to obtain biopsies from the proper tumor locations, i.e. the most
malignant parts22 or to delineate the tumor lesion
for surgery or radiation treatment21b, 23. In all these cases the use of 3D
multivoxel MRS approaches is essential. The tCho signal is most often used as
marker to assess response to therapy of brain tumors by MRS24. Of clinical interest is the
possibility to discriminate between tumor recurrence and radiation necrosis25. The use of MRSI seems best for
this purpose25d. To avoid interference of lipid
signals from the skull area generally a cubic volume is pre-selected for MRSI;
sometimes this may hamper the complete inclusion of tumors located close to the
skull. Other methods not using volume pre-selection or proper data processing
may be helpful in these cases26.
As the analysis of MRS data of brain
tumors may be rather complex to less experienced users in clinical routine and
also because the proper analysis of large datasets from multi-voxel assessments
is manually unpractical, there is need for decision support systems. Much
attention has been given to automated and objective processing and classifying
of voxels of MRS data by a variety of approaches23a, 27. In some studies MRI information
has been included which generally improves the performance of the decision
support systems28. To develop reliable and clinically
useful classifiers of tumor type and grade it is necessary to have a
sufficiently large dataset available of these tumors, which may need
multi-centre efforts, especially in the case of the rarer tumors. In such
mult-centre projects9a, 18b,
27d, 29 data should be acquired with some
flexibility in acquisition modes and parameter settings, as the details of
these will not be exactly the same on different MR systems. Quality control of MR
systems, and of spectral, clinical and histopathological data are part of these
projects30. To further expand the diagnostic
potential also non-MR modalities may be included.
A recent development of importance is
the possibility to detect the onco-metabolite 2-hydroxyglutarate (2-HG) as a
metabolic biomarker for a mutation in the IDH1 gene, which is now also being
explored in treatment evaluations31. This is of particular interest as
the WHO classification of brain tumors is about to be drastically modified
based on classes of genetic mutations in brain tumors.
Abnormal levels of the prostate
specific antigen (PSA) in serum is the most important biomarker used as an
indication that prostate cancer (PCa) may be present, but it has a low
specificity. In the detection of PCa the analysis of ultrasound-guided biopsies
from the prostate plays a major role, but due to sampling errors,
often-negative biopsies occur despite positive PSA levels. Thus better imaging
of the presence of cancer foci is desirable to guide biopsies. The stage of PCa
(occurrence of extra prostatic cancer) is often decisive in therapy-decision,
but is currently mostly estimated from the so-called Partin tables of clinical
findings; thus the addition of imaging might improve individual assessments. Proper
localization of cancer tissue is also of interest for new focal therapies of
local disease. Functional imaging to localize active tumor can be important for
treatment assessment (e.g. recurrence) and may help to predict aggressive progression
of localized PCa. For this purpose multi-parametric MRI is becoming an
important approach in the diagnosis of prostate cancer32. The key methods are T2 weighted
MRI and DWI with additionally dynamic contrast and 1H MRSI. From
these a diagnostic score is summarized using the so-called PIRADS
classification33. The clinical application of 1H
MRSI in this setting depends on its practicality and reliability34.
After
the introduction of endorectal coils it became possible to obtain in vivo 1H
MR spectra of small volumes of the prostate with sufficient signal to noise35. The dominant peaks observed in
these spectra are from protons in citrate, creatine and choline compounds.
Compared to healthy peripheral or BPH tissue the signals of citrate were
reduced and those of choline compounds often increased in cancer tissue and
thus it was obvious that the tCho over citrate peaks could serve as a metabolic
biomarker for prostate cancer. Signals of protons in polyamines are observed resonating
in-between the creatine signal at about 3 ppm and the tCho peak at 3.2 ppm. As citrate
mainly occurs in the ducts of the prostate a lower citrate may indicate altered
metabolism as well as a reduction of luminal space in cancer tissue. Because
tumor tissue can occur anywhere in the prostate it is clear that multi-voxel
methods are essential in further clinical studies. As the prostate is relatively
small and embedded in adipose tissue this requires advanced RF pulses and
sequences to suppress interfering strong lipid signals. In this way 2 and
3-dimensional MR spectroscopic imaging sequences have been realized10b, 35a,
36 of which 3D variants are most
favored as these can cover the whole prostate. Useful three-dimensional
acquisitions can be performed in less than 10 minutes at a true spatial
resolution down to about 0.3 cc. In the analysis of the data of patients it
should be taken into account that different regions of the healthy prostate
such as peripheral zone, central zone, and areas close to the urethra and at the
seminal vesicles close to the base of the prostate have different amplitudes
for citrate, creatine and “choline”compound signals. In addition MRS has to be
performed sufficiently delayed with respect to the time of biopsy to avoid
possible interference of a hemorrhage with spectral quality, due to magnetic
field or morphological distortions.
Because the signals of tCho and
creatine are often not well resolved (at 1.5T) it is common to use the tCho plus creatine over citrate ratio,
which ignores possible decreases in creatine in cancer tissue, but this can be
taken into account in a refined analysis37. By combining T2 weighted MRI and 1H
MRSI sensitivity and specificity in localizing PCa commonly is between 80 and
90% in single site studies, significantly better than T2 MRI alone38. In a cancer detection/localization
study at 3T proton MRSI performed worse than DWI in the peripheral zone, but
better in the transition zone, which suggests an interesting complementary role
for both methods39.The true clinical value of MRSI can
only be judged from the results of multi-center trials40. Potential
confounders in the detection and localization of PCa tissue are conditions such
as prostatitus41 and high grade PIN42, which may mimic metabolism,
physiology and morphology of cancer tissue.
MRSI
can also contribute to the planning and assessment of various treatments of PCa,
such as the detection of recurrence43. 1H MRSI also has been
incorporated in new nomograms to identify low-risk PCa44. It is of particular interest that
the (tCho + Cr)/citrate ratio is correlated with the Gleason score, which is a measure
of tumor aggression45. As yet the overlap between Gleason
scores precludes a use in individual decisions but 1H MRSI appears
to be particular effective to identify tumors with high Gleasons, which
information can be used for focal radiotherapy46. Endorectal MR imaging and
spectroscopic imaging at 1.5T of tumor apparency or inapparency in PCa patients
who selected active surveillance did not appear to have a prognostic value,
similar to conventional biochemical measures47. However, a recent study showed
that MRSI findings have predictive value as they are associated with
post-radical prostatectomy treatment failure.48
Over time substantial progress has
been made in the implementation of proton MRSI methods for the prostate in the
clinic49. However, the translation into a
routine clinical tool is still hampered by cumbersome practicality in
acquisition and postprocessing and suboptimal reliability. To improve the practicality
of postprocessing of MRSI data automatic prostprocessing methods have been
implemented including quality filters to remove bad data50. More recently LASER type 3D acquisition
sequences with GOIA adiabatic pulses have been implemented for 3T which perform
with improved reliability compared to standard PRESS and with a higher SNR at a
shorter TE51. Because of the higher SNR they
allow to acquire data more rapidly52 and to perform robust 1H
MRSI with external phased array coils53, circumventing the use of an
endorectal coil, which is a major barrier to the widespread use of MR of the
prostate.
Three-dimensional 1H MRSI
of the prostate at 7T is now also becoming possible, showing much improved SNR
and thus has prospects for improved spatial resolution54
The potential of MR spectroscopy to
contribute to MR examinations in the management of some human tumors has been
convincingly demonstrated and a large number of clinical institutions are
applying 1H MRS now in the assessment of brain and prostate cancer. The
further translation to a widespread routine clinical tool depends on a few key factors.
Not only a robust and automated measurement procedure is necessary, but also
the rapid and easy digestible display of the results of an examination and
proper training of the clinical users are important. And above all it has to be
clear that methods are generally applicable and produce reliable and
significant clinical results, also compared to other approaches or modalities.
Studies using evidence based medicine (EBM) criteria to evaluate the diagnostic
and therapy decision-making value of MRS applied to patients suspected to have
a brain tumor55 and a critical discussion of the
results of these studies56 have made clear that carefully
standardized multi-site trials, complying to EBM criteria, are still needed to
bring MRS of tumors in general clinical practice57. Thus for the clinical acceptance
of MRS it is important that multi-site trials, as described above, are being
performed, preferably in a prospective way. In these trials the selection of
standardized protocols may be critical.
A particular advantage of MRS is
that it provides quantitative data, which is not common practice in the
clinical assessment of tumors by most (conventional) MRI methods. A general
trend nowadays is to combine MRS data with that of other MR approaches with
higher spatial resolution, such as conventional T1 and T2 weighted MRI, perfusion
MRI (e.g. dynamic contrast enhanced MRI), and diffusion MRI, as it may improve
the diagnostic performance beyond that of each single MR approach. Because of
their non-invasive nature it is expected that all these MR approaches together will
be particular useful in the diagnosis of tumors based on existing and new
(genetic) biomarkers and in the evaluation and prediction of treatment response
and disease progress.
MRSI can be seen as molecular
imaging “avant la lettre”, although it does not involve imaging of tailored
probes for specific molecular or cellular targets, which is often the
restricted definition of molecular imaging. In contrast to common “molecular
imaging” approaches MRS assesses the signals of endogenous compounds. Hence, no
problems associated with the synthesis and injection of exogenous compounds for
targeted diagnostics are involved. The number of endogenous compounds that are
visible by in vivo MRS is limited to about 40 (also including the use of other
nuclei than 1H), because of sensitivity reasons.
However, new ways are being explored
for a substantial sensitivity enhancement of MRS with hyperpolarization of
endogenous (or exogenous) compounds. This hyperpolarization is performed outside
the body and after the compounds are applied intravenously, their metabolic
conversion can be monitored by fast high resolution MRSI, to realize “real time
metabolic imaging” for diagnostic purposes in oncology58. It is exciting that this has been
proven to be applicable to the human prostate showing increased lactate
production from hyperpolarized pyruvate in tumorous areas59. Several groups are now preparing to start with clinical
trials of applying hyperpolarized pyruvate to different tumor types. In these
developments also PET/MR machines may play a role.
References
1. Griffiths, J. R.; Cady, E.; Edwards, R.
H.; McCready, V. R.; Wilkie, D. R.; Wiltshaw, E., 31P-NMR studies of a human
tumour in situ. Lancet 1983, 1 (8339), 1435-6.
2. Negendank, W.; Li, C. W.; Padavic-Shaller, K.;
Murphy-Boesch, J.; Brown, T. R., Phospholipid metabolites in 1H-decoupled 31P
MRS in vivo in human cancer: implications for experimental models and clinical
studies. Anticancer Res 1996, 16 (3B), 1539-44.
3. (a) Bruhn, H.; Frahm, J.; Gyngell, M. L.; Merboldt, K. D.;
Hanicke, W.; Sauter, R.; Hamburger, C., Noninvasive differentiation of tumors
with use of localized H-1 MR spectroscopy in vivo: initial experience in
patients with cerebral tumors. Radiology 1989, 172 (2), 541-8. (b) Öz G, J. Alger, P. Barker, R Bartha, A Bizzi,C Boesch, P Bolan, K. Brindle, C Cudalbu, A Dinçer, U Dydak, U Emir, J Frahm, R González, S Gruber, R Gruetter, R. Gupta, A Heerschap, A Henning, H. Hetherington, F. Howe, P. Hüppi, R. Hurd, For the MRS Consensus Group. Clinical Proton MR Spectroscopy in Central Nervous System Disorders. Radiology: 2014, 270 (3), 658
4. Gillies, R. J.; Morse, D. L., In vivo magnetic resonance
spectroscopy in cancer. Annu Rev Biomed
Eng 2005, 7, 287-326.
5. van Laarhoven, H. W.; Punt, C. J.; Kamm, Y. J.; Heerschap,
A., Monitoring fluoropyrimidine metabolism in solid tumors with in vivo (19)F
magnetic resonance spectroscopy. Crit Rev
Oncol Hematol 2005, 56 (3), 321-43.
6. Arias-Mendoza, F.; Smith, M. R.; Brown, T. R., Predicting
treatment response in non-Hodgkin's lymphoma from the pretreatment tumor
content of phosphoethanolamine plus phosphocholine. Acad Radiol 2004, 11 (4), 368-76.
7. (a) Wijnen, J. P.; Van der Graaf, M.; Scheenen, T. W.;
Klomp, D. W.; de Galan, B. E.; Idema, A. J.; Heerschap, A., In vivo 13C
magnetic resonance spectroscopy of a human brain tumor after application of
13C-1-enriched glucose. Magn Reson
Imaging 2010, 28 (5), 690-7; (b) Biller, A.; Badde,
S.; Nagel, A.; Neumann, J. O.; Wick, W.; Hertenstein, A.; Bendszus, M.; Sahm,
F.; Benkhedah, N.; Kleesiek, J., Improved Brain Tumor Classification by Sodium
MR Imaging: Prediction of IDH Mutation Status and Tumor Progression. AJNR Am J Neuroradiol 2016, 37 (1), 66-73.
8. Scheenen, T. W. J.; Heerschap, A.; Klomp, D. W. J., Towards
H-1-MRSI of the human brain at 7T with slice-selective adiabatic refocusing
pulses. Magn. Reson. Mat. Phys. Biol.
Med. 2008, 21 (1-2), 95-101.
9. (a) eTUMOUR. http://www.etumour.net/; (b)
Henning, A.; Schar, M.; Schulte, R. F.; Wilm, B.; Pruessmann, K. P.; Boesiger,
P., SELOVS: brain MRSI localization based on highly selective T1- and B1-
insensitive outer-volume suppression at 3T. Magn
Reson Med 2008, 59 (1), 40-51.
10. (a) Star-Lack, J.; Nelson, S. J.; Kurhanewicz, J.; Huang, L.
R.; Vigneron, D. B., Improved water and lipid suppression for 3D PRESS CSI
using RF band selective inversion with gradient dephasing (BASING). Magn Reson Med 1997, 38 (2), 311-21; (b)
Scheenen, T. W.; Klomp, D. W.; Roll, S. A.; Futterer, J. J.; Barentsz, J. O.;
Heerschap, A., Fast acquisition-weighted three-dimensional proton MR
spectroscopic imaging of the human prostate. Magn Reson Med 2004, 52 (1), 80-8.
11. Fuchs, A.; Luttje, M.; Boesiger, P.; Henning, A., SPECIAL
semi-LASER with lipid artifact compensation for 1H MRS at 7 T. Magn Reson Med 2013, 69 (3), 603-12.
12. Qin, Q.; Gore, J. C.; Does, M. D.; Avison, M. J.; de Graaf, R.
A., 2D arbitrary shape-selective excitation summed spectroscopy (ASSESS). Magn Reson Med 2007, 58 (1), 19-26.
13. (a) Sijens, P. E.; van den Bent, M. J.; Nowak, P. J.; van
Dijk, P.; Oudkerk, M., 1H chemical shift imaging reveals loss of brain tumor
choline signal after administration of Gd-contrast. Magn Reson Med 1997, 37 (2), 222-5; (b) Murphy, P. S.; Leach,
M. O.; Rowland, I. J., Signal modulation in (1)H magnetic resonance
spectroscopy using contrast agents: proton relaxivities of choline, creatine,
and N-acetylaspartate. Magn Reson Med 1999, 42 (6), 1155-8; (c) Lin, A. P.; Ross, B. D., Short-echo time proton
MR spectroscopy in the presence of gadolinium. J Comput Assist Tomogr 2001,
25 (5), 705-12.
14. Leenders, W.; Kusters, B.; Pikkemaat, J.; Wesseling, P.;
Ruiter, D.; Heerschap, A.; Barentsz, J.; de Waal, R. M., Vascular endothelial
growth factor-A determines detectability of experimental melanoma brain
metastasis in GD-DTPA-enhanced MRI. Int J
Cancer 2003, 105 (4), 437-43.
15. (a) van Dorsten, F. A.; van der Graaf, M.; Engelbrecht, M. R.;
van Leenders, G. J.; Verhofstad, A.; Rijpkema, M.; de la Rosette, J. J.;
Barentsz, J. O.; Heerschap, A., Combined quantitative dynamic contrast-enhanced
MR imaging and (1)H MR spectroscopic imaging of human prostate cancer. J Magn Reson Imaging 2004, 20 (2), 279-87; (b) Futterer, J. J.; Heijmink, S. W.; Scheenen, T.
W.; Veltman, J.; Huisman, H. J.; Vos, P.; Hulsbergen-Van de Kaa, C. A.; Witjes,
J. A.; Krabbe, P. F.; Heerschap, A.; Barentsz, J. O., Prostate cancer localization
with dynamic contrast-enhanced MR imaging and proton MR spectroscopic imaging. Radiology 2006, 241 (2), 449-58.
16. (a) Leenders, W. P.; Kusters, B.; Verrijp, K.; Maass, C.;
Wesseling, P.; Heerschap, A.; Ruiter, D.; Ryan, A.; de Waal, R., Antiangiogenic
therapy of cerebral melanoma metastases results in sustained tumor progression
via vessel co-option. Clin Cancer Res 2004, 10 (18 Pt 1), 6222-30; (b) Jain, R. K., Antiangiogenic therapy for
cancer: current and emerging concepts. Oncology
(Williston Park) 2005, 19 (4 Suppl 3), 7-16.
17. Posse, S.; Otazo, R.; Dager, S. R.; Alger, J., MR
spectroscopic imaging: principles and recent advances. J Magn Reson Imaging 2013,
37 (6), 1301-25.
18. (a) Kugel, H.; Heindel, W.; Ernestus, R. I.; Bunke, J.; du
Mesnil, R.; Friedmann, G., Human brain tumors: spectral patterns detected with
localized H-1 MR spectroscopy. Radiology 1992, 183 (3), 701-9; (b) Negendank, W. G.; Sauter, R.; Brown, T. R.;
Evelhoch, J. L.; Falini, A.; Gotsis, E. D.; Heerschap, A.; Kamada, K.; Lee, B.
C.; Mengeot, M. M.; Moser, E.; Padavic-Shaller, K. A.; Sanders, J. A.;
Spraggins, T. A.; Stillman, A. E.; Terwey, B.; Vogl, T. J.; Wicklow, K.;
Zimmerman, R. A., Proton magnetic resonance spectroscopy in patients with glial
tumors: a multicenter study. J Neurosurg 1996, 84 (3), 449-58.
19. Li, X.; Vigneron, D. B.; Cha, S.; Graves, E. E.; Crawford, F.;
Chang, S. M.; Nelson, S. J., Relationship of MR-derived lactate, mobile lipids,
and relative blood volume for gliomas in vivo. AJNR Am J Neuroradiol 2005,
26 (4), 760-9.
20. (a) Stadlbauer, A.; Gruber, S.; Nimsky, C.; Fahlbusch, R.;
Hammen, T.; Buslei, R.; Tomandl, B.; Moser, E.; Ganslandt, O., Preoperative
grading of gliomas by using metabolite quantification with
high-spatial-resolution proton MR spectroscopic imaging. Radiology 2006, 238 (3), 958-69; (b) Law, M.; Cha, S.;
Knopp, E. A.; Johnson, G.; Arnett, J.; Litt, A. W., High-grade gliomas and
solitary metastases: differentiation by using perfusion and proton
spectroscopic MR imaging. Radiology 2002, 222 (3), 715-21.
21. (a) McKnight, T. R.; von dem Bussche, M. H.; Vigneron, D. B.;
Lu, Y.; Berger, M. S.; McDermott, M. W.; Dillon, W. P.; Graves, E. E.;
Pirzkall, A.; Nelson, S. J., Histopathological validation of a
three-dimensional magnetic resonance spectroscopy index as a predictor of tumor
presence. J Neurosurg 2002, 97 (4), 794-802; (b) Pirzkall, A.; McKnight, T. R.; Graves, E. E.;
Carol, M. P.; Sneed, P. K.; Wara, W. W.; Nelson, S. J.; Verhey, L. J.; Larson,
D. A., MR-spectroscopy guided target delineation for high-grade gliomas. Int J Radiat Oncol Biol Phys 2001, 50 (4), 915-28; (c) Ganslandt, O.; Stadlbauer, A.; Fahlbusch, R.;
Kamada, K.; Buslei, R.; Blumcke, I.; Moser, E.; Nimsky, C., Proton magnetic
resonance spectroscopic imaging integrated into image-guided surgery:
correlation to standard magnetic resonance imaging and tumor cell density. Neurosurgery 2005, 56 (2 Suppl),
291-8; discussion 291-8.
22. (a) Dowling, C.; Bollen, A. W.; Noworolski, S. M.; McDermott,
M. W.; Barbaro, N. M.; Day, M. R.; Henry, R. G.; Chang, S. M.; Dillon, W. P.;
Nelson, S. J.; Vigneron, D. B., Preoperative proton MR spectroscopic imaging of
brain tumors: correlation with histopathologic analysis of resection specimens.
AJNR Am J Neuroradiol 2001, 22 (4), 604-12; (b) Hall, W. A.; Truwit, C. L., 1.5 T:
spectroscopy-supported brain biopsy. Neurosurg
Clin N Am 2005, 16 (1), 165-72, vii; (c) Stadlbauer, A.;
Moser, E.; Gruber, S.; Nimsky, C.; Fahlbusch, R.; Ganslandt, O., Integration of
biochemical images of a tumor into frameless stereotaxy achieved using a
magnetic resonance imaging/magnetic resonance spectroscopy hybrid data set. J Neurosurg 2004, 101 (2), 287-94.
23. (a) McKnight, T. R.; Noworolski, S. M.; Vigneron, D. B.;
Nelson, S. J., An automated technique for the quantitative assessment of
3D-MRSI data from patients with glioma. J
Magn Reson Imaging 2001, 13 (2), 167-77; (b) Nelson, S. J.;
Graves, E.; Pirzkall, A.; Li, X.; Antiniw Chan, A.; Vigneron, D. B.; McKnight,
T. R., In vivo molecular imaging for planning radiation therapy of gliomas: an
application of 1H MRSI. J Magn Reson
Imaging 2002, 16 (4), 464-76; (c) Chan, A. A.; Lau,
A.; Pirzkall, A.; Chang, S. M.; Verhey, L. J.; Larson, D.; McDermott, M. W.;
Dillon, W. P.; Nelson, S. J., Proton magnetic resonance spectroscopy imaging in
the evaluation of patients undergoing gamma knife surgery for Grade IV glioma. J Neurosurg 2004, 101 (3), 467-75.
24. (a) Howe, F. A.; Opstad, K. S., 1H MR spectroscopy of brain
tumours and masses. NMR Biomed 2003, 16 (3), 123-31; (b) Lichy, M. P.; Bachert, P.; Hamprecht, F.;
Weber, M. A.; Debus, J.; Schulz-Ertner, D.; Schlemmer, H. P.; Kauczor, H. U.,
[Application of (1)H MR spectroscopic imaging in radiation oncology: choline as
a marker for determining the relative probability of tumor progression after
radiation of glial brain tumors]. Rofo 2006, 178 (6), 627-33.
25. (a) Tedeschi, G.; Lundbom, N.; Raman, R.; Bonavita, S.; Duyn,
J. H.; Alger, J. R.; Di Chiro, G., Increased choline signal coinciding with
malignant degeneration of cerebral gliomas: a serial proton magnetic resonance
spectroscopy imaging study. J Neurosurg 1997, 87 (4), 516-24; (b) Wald, L. L.; Nelson, S. J.; Day, M. R.;
Noworolski, S. E.; Henry, R. G.; Huhn, S. L.; Chang, S.; Prados, M. D.; Sneed,
P. K.; Larson, D. A.; Wara, W. M.; McDermott, M.; Dillon, W. P.; Gutin, P. H.;
Vigneron, D. B., Serial proton magnetic resonance spectroscopy imaging of
glioblastoma multiforme after brachytherapy. J Neurosurg 1997, 87 (4), 525-34; (c) Graves, E. E.;
Nelson, S. J.; Vigneron, D. B.; Verhey, L.; McDermott, M.; Larson, D.; Chang,
S.; Prados, M. D.; Dillon, W. P., Serial proton MR spectroscopic imaging of
recurrent malignant gliomas after gamma knife radiosurgery. AJNR Am J Neuroradiol 2001, 22 (4), 613-24; (d) Chernov, M.; Hayashi, M.; Izawa, M.; Ochiai,
T.; Usukura, M.; Abe, K.; Ono, Y.; Muragaki, Y.; Kubo, O.; Hori, T.; Takakura,
K., Differentiation of the radiation-induced necrosis and tumor recurrence
after gamma knife radiosurgery for brain metastases: importance of multi-voxel
proton MRS. Minim Invasive Neurosurg 2005, 48 (4), 228-34; (e) Weybright, P.; Sundgren, P. C.; Maly, P.;
Hassan, D. G.; Nan, B.; Rohrer, S.; Junck, L., Differentiation between brain
tumor recurrence and radiation injury using MR spectroscopy. AJR Am J Roentgenol 2005, 185 (6), 1471-6;
(f) Rock, J. P.; Hearshen, D.; Scarpace, L.; Croteau, D.; Gutierrez, J.;
Fisher, J. L.; Rosenblum, M. L.; Mikkelsen, T., Correlations between magnetic
resonance spectroscopy and image-guided histopathology, with special attention
to radiation necrosis. Neurosurgery 2002, 51 (4), 912-9; discussion 919-20; (g) Rock, J. P.; Scarpace, L.;
Hearshen, D.; Gutierrez, J.; Fisher, J. L.; Rosenblum, M.; Mikkelsen, T.,
Associations among magnetic resonance spectroscopy, apparent diffusion
coefficients, and image-guided histopathology with special attention to
radiation necrosis. Neurosurgery 2004, 54 (5), 1111-7; discussion 1117-9; (h) Schlemmer, H. P.; Bachert,
P.; Henze, M.; Buslei, R.; Herfarth, K. K.; Debus, J.; van Kaick, G.,
Differentiation of radiation necrosis from tumor progression using proton
magnetic resonance spectroscopy. Neuroradiology
2002, 44 (3), 216-22.
26. (a) Auer, D. P.; Gossl, C.; Schirmer, T.; Czisch, M., Improved
analysis of 1H-MR spectra in the presence of mobile lipids. Magn Reson Med 2001, 46 (3), 615-8; (b)
Ebel, A.; Maudsley, A. A., Comparison of methods for reduction of lipid
contamination for in vivo proton MR spectroscopic imaging of the brain. Magn Reson Med 2001, 46 (4), 706-12.
27. (a) Poptani, H.; Kaartinen, J.; Gupta, R. K.; Niemitz, M.;
Hiltunen, Y.; Kauppinen, R. A., Diagnostic assessment of brain tumours and
non-neoplastic brain disorders in vivo using proton nuclear magnetic resonance
spectroscopy and artificial neural networks. J Cancer Res Clin Oncol 1999,
125 (6), 343-9; (b) Preul, M. C.;
Caramanos, Z.; Leblanc, R.; Villemure, J. G.; Arnold, D. L., Using pattern
analysis of in vivo proton MRSI data to improve the diagnosis and surgical
management of patients with brain tumors. NMR
Biomed 1998, 11 (4-5), 192-200; (c) Herminghaus, S.;
Dierks, T.; Pilatus, U.; Moller-Hartmann, W.; Wittsack, J.; Marquardt, G.;
Labisch, C.; Lanfermann, H.; Schlote, W.; Zanella, F. E., Determination of
histopathological tumor grade in neuroepithelial brain tumors by using spectral
pattern analysis of in vivo spectroscopic data. J Neurosurg 2003, 98 (1), 74-81; (d) Tate, A. R.;
Underwood, J.; Acosta, D. M.; Julia-Sape, M.; Majos, C.; Moreno-Torres, A.;
Howe, F. A.; van der Graaf, M.; Lefournier, V.; Murphy, M. M.; Loosemore, A.;
Ladroue, C.; Wesseling, P.; Luc Bosson, J.; Cabanas, M. E.; Simonetti, A. W.;
Gajewicz, W.; Calvar, J.; Capdevila, A.; Wilkins, P. R.; Bell, B. A.; Remy, C.;
Heerschap, A.; Watson, D.; Griffiths, J. R.; Arus, C., Development of a
decision support system for diagnosis and grading of brain tumours using in
vivo magnetic resonance single voxel spectra. NMR Biomed 2006, 19 (4), 411-34; (e) Maudsley, A. A.;
Darkazanli, A.; Alger, J. R.; Hall, L. O.; Schuff, N.; Studholme, C.; Yu, Y.;
Ebel, A.; Frew, A.; Goldgof, D.; Gu, Y.; Pagare, R.; Rousseau, F.;
Sivasankaran, K.; Soher, B. J.; Weber, P.; Young, K.; Zhu, X., Comprehensive
processing, display and analysis for in vivo MR spectroscopic imaging. NMR Biomed 2006, 19 (4), 492-503.
28. (a) De Edelenyi, F. S.; Rubin, C.; Esteve, F.; Grand, S.;
Decorps, M.; Lefournier, V.; Le Bas, J. F.; Remy, C., A new approach for
analyzing proton magnetic resonance spectroscopic images of brain tumors:
nosologic images. Nat Med 2000, 6 (11), 1287-9; (b) Simonetti, A. W.; Melssen, W. J.; van der
Graaf, M.; Postma, G. J.; Heerschap, A.; Buydens, L. M., A chemometric approach
for brain tumor classification using magnetic resonance imaging and
spectroscopy. Anal Chem 2003, 75 (20), 5352-61; (c) Galanaud, D.; Nicoli, F.; Chinot, O.;
Confort-Gouny, S.; Figarella-Branger, D.; Roche, P.; Fuentes, S.; Le Fur, Y.;
Ranjeva, J. P.; Cozzone, P. J., Noninvasive diagnostic assessment of brain
tumors using combined in vivo MR imaging and spectroscopy. Magn Reson Med 2006, 55 (6), 1236-45; (d) De Vos, M.;
Laudadio, T.; Simonetti, A. W.; Heerschap, A.; Van Huffel, S., Fast nosologic
imaging of the brain. J Magn Reson 2006; (e) Devos, A.; Simonetti, A. W.;
van der Graaf, M.; Lukas, L.; Suykens, J. A.; Vanhamme, L.; Buydens, L. M.;
Heerschap, A.; Van Huffel, S., The use of multivariate MR imaging intensities
versus metabolic data from MR spectroscopic imaging for brain tumour
classification. J Magn Reson 2005, 173 (2), 218-28.
29. Julia-Sape, M.; Griffiths, J. R.; Tate, R. A.; Howe, F. A.;
Acosta, D.; Postma, G.; Underwood, J.; Majos, C.; Arus, C., Classification of
brain tumours from MR spectra: the INTERPRET collaboration and its outcomes. NMR Biomed 2015, 28 (12), 1772-87.
30. (a) van der Graaf, M.; Julia-Sape, M.; Howe, F. A.; Ziegler,
A.; Majos, C.; Moreno-Torres, A.; Rijpkema, M.; Acosta, D.; Opstad, K. S.; van
der Meulen, Y. M.; Arus, C.; Heerschap, A., MRS quality assessment in a
multicentre study on MRS-based classification of brain tumours. NMR Biomed 2008, 21 (2), 148-58; (b)
Wright, A. J.; Arus, C.; Wijnen, J. P.; Moreno-Torres, A.; Griffiths, J. R.;
Celda, B.; Howe, F. A., Automated quality control protocol for MR spectra of
brain tumors. Magn Reson Med 2008, 59 (6), 1274-81.
31. (a) Choi, C.; Ganji, S. K.; DeBerardinis, R. J.; Hatanpaa, K.
J.; Rakheja, D.; Kovacs, Z.; Yang, X. L.; Mashimo, T.; Raisanen, J. M.;
Marin-Valencia, I.; Pascual, J. M.; Madden, C. J.; Mickey, B. E.; Malloy, C.
R.; Bachoo, R. M.; Maher, E. A., 2-hydroxyglutarate detection by magnetic
resonance spectroscopy in IDH-mutated patients with gliomas. Nat Med 2012, 18 (4), 624-9; (b)
Ganji, S. K.; An, Z.; Tiwari, V.; McNeil, S.; Pinho, M. C.; Pan, E.; Mickey, B.
E.; Maher, E. A.; Choi, C., In vivo detection of 2-hydroxyglutarate in brain
tumors by optimized point-resolved spectroscopy (PRESS) at 7T. Magn Reson Med 2016; (c) Pope, W. B.; Prins, R. M.; Albert Thomas, M.; Nagarajan,
R.; Yen, K. E.; Bittinger, M. A.; Salamon, N.; Chou, A. P.; Yong, W. H.; Soto,
H.; Wilson, N.; Driggers, E.; Jang, H. G.; Su, S. M.; Schenkein, D. P.; Lai,
A.; Cloughesy, T. F.; Kornblum, H. I.; Wu, H.; Fantin, V. R.; Liau, L. M.,
Non-invasive detection of 2-hydroxyglutarate and other metabolites in IDH1
mutant glioma patients using magnetic resonance spectroscopy. J Neurooncol 2012, 107 (1), 197-205;
(d) Andronesi, O. C.; Rapalino, O.; Gerstner, E.; Chi, A.; Batchelor, T. T.;
Cahill, D. P.; Sorensen, A. G.; Rosen, B. R., Detection of oncogenic IDH1
mutations using magnetic resonance spectroscopy of 2-hydroxyglutarate. J Clin Invest 2013, 123 (9), 3659-63;
(e) Andronesi, O. C.; Loebel, F.; Bogner, W.; Marjanska, M.; Vander Heiden, M.
G.; Iafrate, A. J.; Dietrich, J.; Batchelor, T. T.; Gerstner, E. R.; Kaelin, W.
G.; Chi, A. S.; Rosen, B. R.; Cahill, D. P., Treatment Response Assessment in
IDH-Mutant Glioma Patients by Noninvasive 3D Functional Spectroscopic Mapping
of 2-Hydroxyglutarate. Clin Cancer Res 2016, 22 (7), 1632-41.
32. (a) Hoeks, C. M.; Barentsz, J. O.; Hambrock, T.; Yakar, D.;
Somford, D. M.; Heijmink, S. W.; Scheenen, T. W.; Vos, P. C.; Huisman, H.; van
Oort, I. M.; Witjes, J. A.; Heerschap, A.; Futterer, J. J., Prostate cancer:
multiparametric MR imaging for detection, localization, and staging. Radiology 2011, 261 (1), 46-66; (b)
De Visschere, P. J.; Briganti, A.; Futterer, J. J.; Ghadjar, P.; Isbarn, H.;
Massard, C.; Ost, P.; Sooriakumaran, P.; Surcel, C. I.; Valerio, M.; van den
Bergh, R. C.; Ploussard, G.; Giannarini, G.; Villeirs, G. M., Role of
multiparametric magnetic resonance imaging in early detection of prostate
cancer. Insights Imaging 2016, 7 (2), 205-14.
33. (a) Bomers, J. G.; Barentsz, J. O., Standardization of
multiparametric prostate MR imaging using PI-RADS. Biomed Res Int 2014, 2014, 431680; (b) Turkbey, B.; Choyke,
P. L., PIRADS 2.0: what is new? Diagn
Interv Radiol 2015, 21 (5), 382-4.
34. Kobus, T.; Wright, A. J.; Scheenen, T. W.; Heerschap, A.,
Mapping of prostate cancer by 1H MRSI. NMR
Biomed 2014, 27 (1), 39-52.
35. (a) Heerschap, A.; Jager, G. J.; van der Graaf, M.; Barentsz,
J. O.; Ruijs, S. H., Proton MR spectroscopy of the normal human prostate with
an endorectal coil and a double spin-echo pulse sequence. Magn Reson Med 1997, 37 (2), 204-13; (b) Kurhanewicz, J.;
Vigneron, D. B.; Nelson, S. J.; Hricak, H.; MacDonald, J. M.; Konety, B.;
Narayan, P., Citrate as an in vivo marker to discriminate prostate cancer from
benign prostatic hyperplasia and normal prostate peripheral zone: detection via
localized proton spectroscopy. Urology 1995, 45 (3), 459-66; (c) Heerschap, A.; Jager, G. J.; van der Graaf, M.;
Barentsz, J. O.; de la Rosette, J. J.; Oosterhof, G. O.; Ruijter, E. T.; Ruijs,
S. H., In vivo proton MR spectroscopy reveals altered metabolite content in
malignant prostate tissue. Anticancer Res
1997, 17 (3A), 1455-60.
36. (a) Kurhanewicz, J.; Vigneron, D. B.; Hricak, H.; Narayan, P.;
Carroll, P.; Nelson, S. J., Three-dimensional H-1 MR spectroscopic imaging of
the in situ human prostate with high (0.24-0.7-cm3) spatial resolution. Radiology 1996, 198 (3), 795-805;
(b) van der Graaf, M.; van den Boogert, H. J.; Jager, G. J.; Barentsz, J. O.;
Heerschap, A., Human prostate: multisection proton MR spectroscopic imaging
with a single spin-echo sequence--preliminary experience. Radiology 1999, 213 (3), 919-25.
37. (a) Jung, J. A.; Coakley, F. V.; Vigneron, D. B.; Swanson, M.
G.; Qayyum, A.; Weinberg, V.; Jones, K. D.; Carroll, P. R.; Kurhanewicz, J.,
Prostate depiction at endorectal MR spectroscopic imaging: investigation of a
standardized evaluation system. Radiology
2004, 233 (3), 701-8; (b) Futterer, J. J.; Scheenen, T. W.; Heijmink, S.
W.; Huisman, H. J.; Hulsbergen-Van de Kaa, C. A.; Witjes, J. A.; Heerschap, A.;
Barentsz, J. O., Standardized threshold approach using three-dimensional proton
magnetic resonance spectroscopic imaging in prostate cancer localization of the
entire prostate. Invest Radiol 2007, 42 (2), 116-22.
38. Futterer, J. e. a., Dynamic Contrast-Enhanced MR and Proton MR
Spectroscopic Imaging in Localizing Prostate Cancer. submitted 2006.
39. Kobus, T.; Vos, P. C.; Hambrock, T.; De Rooij, M.;
Hulsbergen-Van de Kaa, C. A.; Barentsz, J. O.; Heerschap, A.; Scheenen, T. W.,
Prostate cancer aggressiveness: in vivo assessment of MR spectroscopy and
diffusion-weighted imaging at 3 T. Radiology
2012, 265 (2), 457-67.
40. Scheenen, T. W.; Futterer, J.; Weiland, E.; van Hecke, P.;
Lemort, M.; Zechmann, C.; Schlemmer, H. P.; Broome, D.; Villeirs, G.; Lu, J.;
Barentsz, J.; Roell, S.; Heerschap, A., Discriminating cancer from noncancer
tissue in the prostate by 3-dimensional proton magnetic resonance spectroscopic
imaging: a prospective multicenter validation study. Invest Radiol 2011, 46 (1), 25-33.
41. (a) Shukla-Dave, A.; Hricak, H.; Eberhardt, S. C.; Olgac, S.;
Muruganandham, M.; Scardino, P. T.; Reuter, V. E.; Koutcher, J. A.; Zakian, K.
L., Chronic prostatitis: MR imaging and 1H MR spectroscopic imaging
findings--initial observations. Radiology
2004, 231 (3), 717-24; (b) van Dorsten F; Engelbrecht M; vsan der Graaf
M; de la Rosette J; Barentsz J; A, H., Differentiation of prostatitus from
prostate carcinoma using 1H MR spectroscopic imaging and dynamic
contrast-enhanced MRI. Proc. Intl. Soc.
Mag. Reson. Med. 2001, 9.
42. Hom, J. J.; Coakley, F. V.; Simko, J. P.; Lu, Y.; Qayyum, A.;
Westphalen, A. C.; Schmitt, L. D.; Carroll, P. R.; Kurhanewicz, J., High-grade
prostatic intraepithelial neoplasia in patients with prostate cancer: MR and MR
spectroscopic imaging features--initial experience. Radiology 2007, 242 (2), 483-9.
43. (a) Kurhanewicz, J.; Vigneron, D. B.; Hricak, H.; Parivar, F.;
Nelson, S. J.; Shinohara, K.; Carroll, P. R., Prostate cancer: metabolic
response to cryosurgery as detected with 3D H-1 MR spectroscopic imaging. Radiology 1996, 200 (2), 489-96;
(b) Parivar, F.; Hricak, H.; Shinohara, K.; Kurhanewicz, J.; Vigneron, D. B.;
Nelson, S. J.; Carroll, P. R., Detection of locally recurrent prostate cancer
after cryosurgery: evaluation by transrectal ultrasound, magnetic resonance
imaging, and three-dimensional proton magnetic resonance spectroscopy. Urology 1996, 48 (4), 594-9; (c)
Coakley, F. V.; Teh, H. S.; Qayyum, A.; Swanson, M. G.; Lu, Y.; Roach, M., 3rd;
Pickett, B.; Shinohara, K.; Vigneron, D. B.; Kurhanewicz, J., Endorectal MR
imaging and MR spectroscopic imaging for locally recurrent prostate cancer
after external beam radiation therapy: preliminary experience. Radiology 2004, 233 (2), 441-8; (d)
Pickett, B.; Kurhanewicz, J.; Coakley, F.; Shinohara, K.; Fein, B.; Roach, M.,
3rd, Use of MRI and spectroscopy in evaluation of external beam radiotherapy
for prostate cancer. Int J Radiat Oncol
Biol Phys 2004, 60 (4), 1047-55; (e) Pucar, D.;
Shukla-Dave, A.; Hricak, H.; Moskowitz, C. S.; Kuroiwa, K.; Olgac, S.; Ebora,
L. E.; Scardino, P. T.; Koutcher, J. A.; Zakian, K. L., Prostate cancer:
correlation of MR imaging and MR spectroscopy with pathologic findings after
radiation therapy-initial experience. Radiology
2005, 236 (2), 545-53; (f) Zaider, M.; Zelefsky, M. J.; Lee, E. K.;
Zakian, K. L.; Amols, H. I.; Dyke, J.; Cohen, G.; Hu, Y.; Endi, A. K.; Chui,
C.; Koutcher, J. A., Treatment planning for prostate implants using
magnetic-resonance spectroscopy imaging. Int
J Radiat Oncol Biol Phys 2000, 47 (4), 1085-96.
44. Shukla-Dave, A.; Hricak, H.; Scardino, P. T., Imaging low-risk
prostate cancer. Curr Opin Urol 2008, 18 (1), 78-86.
45. (a) Zakian, K. L.; Sircar, K.; Hricak, H.; Chen, H. N.;
Shukla-Dave, A.; Eberhardt, S.; Muruganandham, M.; Ebora, L.; Kattan, M. W.;
Reuter, V. E.; Scardino, P. T.; Koutcher, J. A., Correlation of proton MR
spectroscopic imaging with gleason score based on step-section pathologic
analysis after radical prostatectomy. Radiology
2005, 234 (3), 804-14; (b) Kurhanewicz, J.; Swanson, M. G.; Nelson, S.
J.; Vigneron, D. B., Combined magnetic resonance imaging and spectroscopic
imaging approach to molecular imaging of prostate cancer. J Magn Reson Imaging 2002,
16 (4), 451-63; (c) Selnaes, K. M.;
Gribbestad, I. S.; Bertilsson, H.; Wright, A.; Angelsen, A.; Heerschap, A.;
Tessem, M. B., Spatially matched in vivo and ex vivo MR metabolic profiles of
prostate cancer -- investigation of a correlation with Gleason score. NMR Biomed 2013, 26 (5), 600-6.
46. (a) Zakian, K. L.; Shukla-Dave, A.; Ackerstaff, E.; Hricak,
H.; Koutcher, J. A., 1H magnetic resonance spectroscopy of prostate cancer:
biomarkers for tumor characterization. Cancer
Biomark 2008, 4 (4-5), 263-76; (b) Chang, S. T.;
Westphalen, A. C.; Jha, P.; Jung, A. J.; Carroll, P. R.; Kurhanewicz, J.;
Coakley, F. V., Endorectal MRI and MR spectroscopic imaging of prostate cancer:
developing selection criteria for MR-guided focal therapy. J Magn Reson Imaging 2014,
39 (3), 519-25.
47. Cabrera, A. R.; Coakley, F. V.; Westphalen, A. C.; Lu, Y.;
Zhao, S.; Shinohara, K.; Carroll, P. R.; Kurhanewicz, J., Prostate cancer: is
inapparent tumor at endorectal MR and MR spectroscopic imaging a favorable
prognostic finding in patients who select active surveillance? Radiology 2008, 247 (2), 444-50.
48. Zakian, K. L.; Hatfield, W.; Aras, O.; Cao, K.; Yakar, D.;
Goldman, D. A.; Moskowitz, C. S.; Shukla-Dave, A.; Tehrani, Y. M.; Fine, S.;
Eastham, J.; Hricak, H., Prostate MRSI Predicts Outcome in Radical
Prostatectomy Patients. Magn Reson
Imaging 2016.
49. (a) Chen, A. P.; Cunningham, C. H.; Kurhanewicz, J.; Xu, D.;
Hurd, R. E.; Pauly, J. M.; Carvajal, L.; Karpodinis, K.; Vigneron, D. B.,
High-resolution 3D MR spectroscopic imaging of the prostate at 3 T with the
MLEV-PRESS sequence. Magn Reson Imaging 2006, 24 (7), 825-32; (b) Futterer, J. J.; Scheenen, T. W.; Huisman, H.
J.; Klomp, D. W.; van Dorsten, F. A.; Hulsbergen-van de Kaa, C. A.; Witjes, J.
A.; Heerschap, A.; Barentsz, J. O., Initial experience of 3 tesla endorectal
coil magnetic resonance imaging and 1H-spectroscopic imaging of the prostate. Invest Radiol 2004, 39 (11), 671-80;
(c) Scheenen, T. W.; Gambarota, G.; Weiland, E.; Klomp, D. W.; Futterer, J. J.;
Barentsz, J. O.; Heerschap, A., Optimal timing for in vivo 1H-MR spectroscopic
imaging of the human prostate at 3T. Magn
Reson Med 2005, 53 (6), 1268-74; (d) Scheenen, T. W.;
Heijmink, S. W.; Roell, S. A.; Hulsbergen-Van de Kaa, C. A.; Knipscheer, B. C.;
Witjes, J. A.; Barentsz, J. O.; Heerschap, A., Three-dimensional proton MR
spectroscopy of human prostate at 3 T without endorectal coil: feasibility. Radiology 2007, 245 (2), 507-16;
(e) Lichy, M. P.; Pintaske, J.; Kottke, R.; Machann, J.; Anastasiadis, A.;
Roell, S.; Hennenlotter, J.; Diergarten, T.; Schick, F.; Stenzl, A.; Claussen,
C. D.; Schlemmer, H. P., 3D proton MR spectroscopic imaging of prostate cancer
using a standard spine coil at 1.5 T in clinical routine: a feasibility study. Eur Radiol 2005, 15 (4), 653-60.
50. (a) Wright, A. J.; Heerschap, A., Simple baseline correction
for 1H MRSI data of the prostate. Magn
Reson Med 2012, 68 (6), 1724-30; (b) Wright, A. J.;
Kobus, T.; Selnaes, K. M.; Gribbestad, I. S.; Weiland, E.; Scheenen, T. W.;
Heerschap, A., Quality control of prostate 1 H MRSI data. NMR Biomed 2013, 26 (2), 193-203; (c) Kelm, B. M.; Menze,
B. H.; Zechmann, C. M.; Baudendistel, K. T.; Hamprecht, F. A., Automated
estimation of tumor probability in prostate magnetic resonance spectroscopic
imaging: pattern recognition vs quantification. Magn Reson Med 2007, 57 (1), 150-9.
51. Steinseifer, I. K.; van Asten, J. J.; Weiland, E.; Scheenen,
T. W.; Maas, M. C.; Heerschap, A., Improved volume selective (1) H MR
spectroscopic imaging of the prostate with gradient offset independent
adiabaticity pulses at 3 tesla. Magn
Reson Med 2015, 74 (4), 915-24.
52. Steinseifer, I. K.; Philips, B. W.; Gagoski, B.; Weiland, E.;
Scheenen, T. W.; Heerschap, A., Flexible proton 3D MR spectroscopic imaging of
the prostate with low-power adiabatic pulses for volume selection and spiral
readout. Magn Reson Med 2016.
53. Tayari N, Steinseifer I, Fu C, Weiland E, van Asten J, Scheenen T,
Maas M1 and Heerschap A In Robust 3D 1H
MRSI of the prostate without endorectal coil at 3T, Proceedings ISMRM
Toronto 2015.
54. Lagemaat, M. W.; Breukels, V.; Vos, E. K.; Kerr, A. B.; van
Uden, M. J.; Orzada, S.; Bitz, A. K.; Maas, M. C.; Scheenen, T. W., (1) H MR
spectroscopic imaging of the prostate at 7T using spectral-spatial pulses. Magn Reson Med 2016, 75 (3), 933-45.
55. Magnetic Resonance spectroscopy for evaluation of suspected
brain tumor. www.bcbs.com.tec/vol18/18_01.html
: TEC Bull 2003, 20 (1), 23 - 6.
56. (a) Ross, B. D., Evidence-based Medicine: what's wrong with
spectroscopy papers. Proc. Intl. Soc.
Mag. Reson. Med. 13 2005, 126;
(b) Lin, A.; Ross, B. D.; Harris, K.; Wong, W., Efficacy of proton magnetic
resonance spectroscopy in neurological diagnosis and neurotherapeutic decision
making. NeuroRx 2005, 2 (2), 197-214.
57. Hollingworth, W.; Medina, L. S.; Lenkinski, R. E.; Shibata, D.
K.; Bernal, B.; Zurakowski, D.; Comstock, B.; Jarvik, J. G., A systematic
literature review of magnetic resonance spectroscopy for the characterization
of brain tumors. AJNR Am J Neuroradiol 2006, 27 (7), 1404-11.
58. Golman, K.; Zandt, R. I.; Lerche, M.; Pehrson, R.;
Ardenkjaer-Larsen, J. H., Metabolic imaging by hyperpolarized 13C magnetic
resonance imaging for in vivo tumor diagnosis. Cancer Res 2006, 66 (22), 10855-60.
59. Nelson, S. J.; Kurhanewicz, J.; Vigneron, D. B.; Larson, P.
E.; Harzstark, A. L.; Ferrone, M.; van Criekinge, M.; Chang, J. W.; Bok, R.;
Park, I.; Reed, G.; Carvajal, L.; Small, E. J.; Munster, P.; Weinberg, V. K.;
Ardenkjaer-Larsen, J. H.; Chen, A. P.; Hurd, R. E.; Odegardstuen, L. I.; Robb,
F. J.; Tropp, J.; Murray, J. A., Metabolic imaging of patients with prostate
cancer using hyperpolarized [1-(1)(3)C]pyruvate. Sci Transl Med 2013, 5 (198), 198ra108.