

Introduction

- DWI has become a standard sequence in body MRI protocols, largely for oncologic assessment
- Technical challenges related to EPI technique and variability in postprocessing
- Opportunity for continued optimization:
 - Image acquisition
 - Data analysis

Andrew Rosenkrantz, MD NYULMC

Advances in DWI Acquisition

- Largely focus on:
 - Reducing anatomic distortion
 - Reducing artifacts
 - Reducing acquisition time
- · Various strategies explored in body imaging:
 - Reduced-FOV imaging
 - Readout-segmented acquisition
 - Bipolar vs. monopolar refocusing schemes
 - Simultaneous multi-slice imaging

Andrew Rosenkrantz, MD NYULMC

Reduced-FOV DWI

- Focused excitation using 2D spatiallyselective excitation pulses at a smaller FOV targeting organ of interest
- Elimination of wrap artifact that is encountered if simply reducing the FOV for a standard DWI sequence
- Achieves higher spatial resolution

Andrew Rosenkrantz, MD NYULMC

Reduced-FOV DWI

- Increased pixel bandwidth along phaseencoding direction
- Reduced-FOV greatly facilitated by 2-channel parallel transmission
- Sequence modifications using pTx allow reduced read-out length in PE-direction
 - Substantially shorter ETL
 - Reduced TE_{min}
 - Potentially increase SNR
 - Reduced distortion and artifacts

Reduced-FOV DWI

- Most useful for small structures:
 - Prostate
 - Pancreas

Andrew Rosenkrantz, MD NYULMC

Reduced-FOV DWI: Prostate

- Thierfelder et al (Eur Radiol 2014)
 - Reduced distortions relative to T2WI
 - Reduced artifacts
 - Improved anatomic clarity
 - Improved agreement for prostate diameter/volume
 - Improved overall image quality
- Rosenkrantz et al (Abd Imaging 2014)
 - Reduced artifacts
 - Improved anatomic clarity
 - Improved overall image quality
- Suggested role in facilitating non-endorectal coil small-FOV imaging

Andrew Rosenkrantz, MD NYULMC

Reduced-FOV DWI: Pancreas

- Thierfelder et al (Eur J Radiol 2014)
 - Reduced artifacts
 - Improved visualization of pancreatic duct
 - Improved overall image quality
- Riffel et al (PLoS One 2014)
 - Less image blur
 - Less respiratory motion artifact
 - Improved delineation of pancreas
 - Improved diagnostic confidence
- Ma et al (MRI 2014)
 - More than 2x improvement in spatial resolution
 - Improved image quality

Andrew Rosenkrantz, MD NYULMC

Reduced-FOV DWI

- Longer time needed for 2D spatiallyselective pulses
 - Potentially reduced SNR from longer minimum TE
 - However, partially offset by reduced readout length
- Potential impact on ADC values:
 - No impact on ADC values in four of five previously cited studies

Andrew Rosenkrantz, MD NYULMC

Readout-Segmented DWI

- Acquire k-space as multiple shots or segments along the readout direction
- Substantially reduced echo-train length and echo spacing within each segment
- 2D-navigator based reacquisition to correct for motion between segments with large phase errors and guide combining of segments
- · Reduced artifacts and anatomic distortion
- Improved spatial resolution possible
- Suggested to be helpful by bone or gas interfaces (i.e., bowel loops)

Andrew Rosenkrantz, MD NYULMC

Readout-Segmented DWI

Readout-Segmented DWI: Pelvis

- Thian et al (Acad Radiology 2014)
 - Reduced blurring
 - Reduced artifacts
 - Improved lesion conspicuity
 - Improved overall image quality

Andrew Rosenkrantz, MD NYULMC

Readout-Segmented DWI: Liver

- Tokoro et al (Eur J Radiology 2014)
 - Showed feasibility and good image quality of freebreathing RS-DWI of the liver at reasonable scan time

Andrew Rosenkrantz, MD NYULMC

Readout-Segmented DWI: Breast

- Bogner et al (Radiology 2012)
 - Improved diagnostic accuracy
 - Improved lesion conspicuity
 - Improved image quality
 - Reduced anatomic distortions
- Bogner et al (Radiology 2014)
 - Performed at 7T
 - Subcentimeter resolution
 - Reduced distortion & blurring by factor of 7

Andrew Rosenkrantz, MD NYULMC

Readout-Segmented DWI

- Much slower readout of total k-space data
- Longer overall acquisition time
- May offset reduction in motion artifact
- Must consider tradeoffs to be clinically practical
 - Reduced anatomic coverage
 - Fewer b-values
 - Reduced averages
- Reduced SNR from higher spatial resolution

Andrew Rosenkrantz, MD NYULMC

Multi-band DWI

- Simultaneous acquisition of multiple slices (SMS)
- Composite RF pulse that simultaneously excites
 multiple slices
 - Signals superimposed in echo-train
- Apply multi-coil array and parallel imaging principles to individually reconstruct the excited slices
- More recently, use of tailored multi-band RF pulse with selective excitation of multiple slices that allows acceleration in the slice direction
 - Shorter TR and faster acquisition than earlier versions

Andrew Rosenkrantz, MD NYULMC

Multi-band DWI: Cardiac

- Lau AZ et al (MRM 2014):
 - Substantial time acceleration for multi-slice cardiac DTI
 - 9 breath-holds
 - Maintained high image quality

Multi-band DWI: Liver

- Bhat H et al (ISMRM 2013):
 - 2x acceleration for liver DWI
 - Equivalent diagnostic quality and lesion conspicuity
 - Highly correlated ADC values

<image><section-header><section-header><section-header><section-header>

Andrew Rosenkrantz, MD NYULMC

Multi-band DWI

- Although some reduction in SNR, sequence remains relatively SNR-efficient
 - No reduction in echo train length as with partial Fourier or in-plane parallel acceleration methods that reduce sampling, so avoid $\sqrt(N)$ SNR loss
 - SNR penalty less than through other methods to achieve comparable reduction in acquisition time for standard EPI DWI

Andrew Rosenkrantz, MD NYULMC

Monopolar vs. Bipolar DWI

- "Monopolar" DWI:
 - Single pair of gradients on either side of 180° refocusing pulse
- Commonly perform DWI with separate 180° refocusing pulses in encoding and decoding phases of the diffusion-encoding scheme
 - Described as "bipolar" encoding
 - Yields lobes of alternating polarity
 - Compensates for residual eddy currents

Andrew Rosenkrantz, MD NYULMC

Monopolar vs. Bipolar DWI

- Impact of bipolar scheme:
 - Reduced distortion
 - Longer TE due to second refocusing pulse
 Lower SNR
- Recent investigations in literature regarding this trade-off
 - Bipolar scheme favored overall, but not in all studies

Monopolar vs. Bipolar DWI

- Kyriazi et al (Eur Radiol 2010)

 Bipolar improved distortion and led to overall higher image quality
- Rosenkrantz et al (Abd Imaging 2014)
 Monopolar had higher overall image quality in liver
- Lewis et al (AJR 2015)

 Equivalent image quality and lesion detection in liver
- Dyvorne et al. (Radiology 2013) – Comparable image quality in liver

Andrew Rosenkrantz, MD NYULMC

Advances in DWI Analysis

- Post-processing
 - -Computed high b-value images
 - -Advanced fitting models
- Measurements
 - -Whole-lesion histogram analysis
 - Prostate, liver, pancreas, bladder

Andrew Rosenkrantz, MD NYULMC

Computed high b-value DWI

- Typically perform DWI using b-values up to approximately 1,000 sec/mm²
- Higher b-value images suffer from reduced SNR and increased distortion
- Computed (extrapolated, synthesized) ultra high b-value images
 - Mathematically generated from standard b-value images, rather than directly acquired
 - Based on standard mono-exponential fit

Andrew Rosenkrantz, MD NYULMC

Computed high b-value DWI

- Provides image contrast of ultra high bvalue images
- Good quality in terms of distortion and artifacts relative to truly acquired ultra high b-value images
- No additional acquisition time compared with that needed to acquire standard bvalue images

Andrew Rosenkrantz, MD NYULMC

Computed high b-value DWI

- Most widely applied in prostate imaging – Mass MC et al (Invest Radiol 2013)
 - Ueno Y et al (Eur Radiol 2013)
 - Rosenkrantz AB et al (Eur Radiol 2013)
 - Bittencourt LK et al (World J Radiol 2014)
 - Vural M et al (Biomed Res Int 2014)
- Image quality and lesion detection consistently outperform acquired b1000 images and at least comparable to acquired higher b-values
- Formally acknowledged in ACR PI-RADS

Andrew Rosenkrantz, MD NYULMC

DWI: Computed high b-values

Extrapolated b1500

Computed high b-value DWI

 Conceptual limitation that monoexponential model used for extrapolation does not apply at ultra high b-values

Andrew Rosenkrantz, MD NYULMC

Diffusion Kurtosis Imaging

- Mono-exponential model no longer universally correct at b-values > 1,000
- SI decay plot no longer linear, but exhibits unique curvature, deviating from monoexponential model
- Attributed to non-Gaussian water diffusion behavior
- DKI takes into account non-Gaussian water behavior at very high b-values

Andrew Rosenkrantz, MD NYULMC

Diffusion Kurtosis Imaging

•Standard mono-exponential model: $S = S_0 \cdot e(-b \cdot ADC)$

•Non-Gaussian model: $S = S_0 \cdot e [-bD + (1/6)b^2 D^2 K]$

K: Diffusional kurtosis Typically in range of 0-2

Higher value \rightarrow Greater non-Gaussian behavior Greater deviation from mono-exponential curve

D: diffusion coefficient corrected for the non-Gaussian behavior

Andrew Rosenkrantz, MD NYULMC

Diffusion Kurtosis Imaging

- ADC attributed to extracellular water diffusion
- K also believed to be, in part, impacted by intracellular compounds and exchange
- K increased in setting of more irregular and heterogeneous intracellular environments
 - For example, increased nuclear-cytoplasmic ratio

Andrew Rosenkrantz, MD NYULMC

Andrew Rosenkrantz, MD NYULMC

Diffusion Kurtosis Imaging

- Acquisition using standard DWI sequence
- Requires a maximal b-value of at least 1,500 sec/mm², if not higher
- Sufficient SNR on maximal b-value images critical for reliable K estimates
 - Mathematical noise compensation advised
- Dedicated post-processing software required

Diffusion Kurtosis Imaging: Prostate

- For body imaging, most widely applied in prostate
- Improved differentiation of benign vs. malignant tissue:
 - Tamura C et al. (JMRI 2014)
 - Mazzoni LN et al (JMRI 2014)
 - Suo S et al (MRI 2014)
- Improved differentiation of low vs. high grade cancer
 - Rosenkrantz AB et al (Radiology 2012)
 - AUC of 0.70 for K compared with 0.62 for ADC

Andrew Rosenkrantz, MD NYULMC

Diffusion Kurtosis Imaging

- Breast (Wu D et al., PloS one 2014)
- Improved accuracy for benign vs. malignant lesions using K
- Lung (Trampel R et al., MRM 2006)
 K, but not ADC, showed alterations in small airway disease imaging using hyperpolarized helium
- Liver (Rosenkrantz AB et al, MRI 2014)
 - In ex-vivo liver explants, K positively correlated with tumor cellularity of HCC; K also reduced in necrotic treated HCC
- Bladder (Suo S et al. JCAT 2015)
 - Higher AUC of K than ADC for bladder cancer grade

Andrew Rosenkrantz, MD NYULMC

Whole-lesion Histogram Analysis

- In clinical practice, commonly measure ADC based on user-defined single-slice ROI
- Prone to sampling error, inter-observer variability, and incomplete representation of lesion
- Alternative use of whole-lesion histogram analysis:
 - 3D volume-of-interest encompassing entire lesion
 - Dedicated software for extracting histogrambased metrics

Andrew Rosenkrantz, MD NYULMC

Whole-lesion Histogram Analysis

- Complete lesion sampling
- Metrics that may be more sensitive to aggressive elements within tumor than mean or median ADC:
 - 10th or 25th percentile ADC
- Additional metrics assessing lesion texture and heterogeneity:
 - Kurtosis
 - Skewness
 - Entropy

Andrew Rosenkrantz, MD NYULMC

WL Histogram Analysis: Prostate

- ADC entropy (Rosenkrantz AB et al, JMRI 2014:

 Outperformed standard mean ADC in characterizing Gleason 4 component in Gleason 7 cancer
- 10th percentile ADC (Donati OF et al, Radiology 2014):
 - Stronger correlation with Gleason score at prostatectomy than mean or median ADC
- 10th percentile ADC (Peng Y et al, Radiology 2013)
 - Independent variable from mean ADC in a highly accurate model for localizing cancer at prostatectomy

Andrew Rosenkrantz, MD NYULMC

WL Histogram Analysis: Other

- **Bladder** (Rosenkrantz AB et al Abd Imaging 2014):
 - Kurtosis, but not ADC, difference in bladder tumors with nodal and distant metastases
- **Bladder** (Suo ST et al., Acad Radiol 2014)
 - Combination of mean ADC and kurtosis achieved highest accuracy for separating benign and malignant lesions
- Adnexa (Kierans AS et al, JMRI 2013)
 - Entropy more accuracy than mean ADC for differentiating benign and malignant lesions

WL Histogram Analysis: Other

- Cervical cancer (Downey K et al, AJR 2013)
 Skewness significantly less positive in adenocarcinoma than squamous cell carcinoms
- Rectal cancer (Cho Sh et al, Acta Radiol 2014)
- 10th percentile ADC outperformed mean ADC in predicting complete pathologic response to chemoradiotherapy

Andrew Rosenkrantz, MD NYULMC

Conclusion

- Various acquisition schemes studied for improving image quality or scan time of DWI
 - Some of the described methods require parallel transmission
 - Overall, small number of published studies validating methods in body imaging
 - Small-FOV DWI supported in pancreas and prostate
- DKI model provides novel parameter K, although further studies in the body required
- Whole-lesion histogram assessment supported for improved oncologic assessment in spectrum of pelvic tissues

Andrew Rosenkrantz, MD NYULMC

Acknowledgements

- Joachim Graessner PhD
- Thorsten Feiweier PhD