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SYNOPSIS 

Imaging modalities such as CT and MRI are powerful tools to detect and assess focal injury such 

as hemorrhagic lesions and edema and brain swelling in severe injury.  However, acute and 

chronic injury at a cellular level is sometimes difficulty to discern from normal features by 

anatomical imaging. MRS offers a unique non-invasive approach to assess injury at microscopic 

levels by quantifying cellular metabolites. The findings obtained with MRS in concussion and 

more severe head trauma are heterogeneous, reflecting the different time after injury, degree of 

injury and different physiologic and pathologic response of the brain to injury in individuals. The 

most important findings are that elevated lactate (and lipids) in apparently normal or close to 

normal tissue observed 2-5 days after injury are indicators of severe global hypoxic injury and 

poor outcome.  Also, N-acetylaspartate (NAA), a marker for “healthy” neurons and axons, is 

generally reduced in traumatic brain injury signaling neuronal and axonal loss/damage. The 

extent of NAA reduction after injury is an objective and quantitative surrogate marker for the 

severity of injury and is useful for outcome prediction.  In the cases of mild traumatic brain 

injury, choline (Cho) has been shown to be reflective of diffuse axonal injury. 
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Traumatic brain injury (TBI) 
Trauma syndromes:  Closed head injury (aka traumatic brain injury – TBI) describes the 

constellation of neurological deficits associated with blows to head without any penetrating 

wound.  Sub-classifications are based upon the nature of the physical insult – blast, pressure, 

motor vehicle accidents and falls, civilian, sports-related or military.  The syndromes associated 

with TBI are graded by severity (mild, with no apparent abnormality on screening CT, moderate 

and severe) and degree of ‘coma’ (Glasgow coma score), as are the sequelae, ‘outcome grades’ 
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applied after 6 – 12 months.  Longer-term outcomes include neuropsychological and psychiatric 

complications of post-traumatic stress disorder (PTSD).  Better acute classification of TBI in the 

individual patient, which is important to clinical management, is becoming available as the range 

of neuro-imaging and recording techniques expands (Hunter JV et al. 2012). 

Pathobiology:  Biomechanical effects are broadly divided into focal – resulting in 

contusion (‘bruising’), laceration (intra-cranial hemorrhage) - and diffuse, due to acceleration-

deceleration forces causing diffuse axonal injury (DAI) and brain swelling (Ghajar J 2000; Giza 

CC and DA Hovda 2001; Werner C and K Engelhard 2007; Elkin BS et al. 2010; Johnson VE et 

al. 2013).  Secondary effects include altered cerebral blood flow, oxygenation and metabolism, 

excitotoxicity, edema formation and free-radical release and other inflammatory processes 

contributing to the wide range of clinical patterns of TBI (Ross BD et al. 1998).  Recognition of 

highly variable patterns of TBI is of importance to the neurologist designing clinical trials of 

therapy (Janowitz T and DK Menon 2010; Xiong Y et al. 2010; Kelso ML and JR Pauly 2011; 

Patterson ZR and MR Holahan 2012). 

Genetics:  TBI outcomes are the subject of genetic studies (Kurowski B et al. 2012):  

APOE e4 status being associated with worse outcome at all ages (Teasdale GM et al. 2005).  

Studies in a Drosophila model (Katzenberger RJ et al. 2013) seem poised to identify an array of 

genes contributing to the variable outcome after experimental TBI. 

Neurochemical substrate:  Abnormalities of cerebral glucose metabolism, pentose 

phosphate shunt, and cerebral ATP and mitochondrial energy metabolism, activation of 

phospholipase (Phillis JW and MH O'Regan 2004; Farooqui AA et al. 2006) and dysfunction of 

glutamate- glutamine-GABA (Faden AI et al. 1989; Giza CC and DA Hovda 2001; Johnson VE 

et al. 2013) have been defined in research studies of TBI.  With the benefit of 20 years of clinical 

MRS research into human TBI (Kreis R et al. 1993; Cecil KM et al. 1998; Friedman SD et al. 

1998; Ross BD et al. 1998; Friedman SD et al. 1999; Brooks WM et al. 2000; Brooks WM et al. 

2001; Garnett MR et al. 2001; Govindaraju V et al. 2004; Shutter L et al. 2004; Cohen BA et al. 

2007; Nakabayashi M et al. 2007; Gasparovic C et al. 2009; Vagnozzi R et al. 2010; Lin AP et 

al. 2012; Benarroch EE 2013; Kierans AS et al. 2014), we may add disruption of neurons and 

axons (manifested by abnormal NAA), myelin (Cho), osmoregulation (mI), neurotransmitter 
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(glutamate), lipid, phospholipid (macromolecules), high energy ATP and PCr metabolism, as 

well as neuroinflammation with microglial activation. 

Systemic contributions:  Endocrine imbalance (Rothman MS et al. 2007; Sterns RH and 

SM Silver 2008; John CA and MW Day 2012) with either inappropriate ADH secretion or 

hypernatremic, hyperosmolar states, cardiac arrest with hypoxic encephalopathy, and systemic 

hypoxia and acidosis may complicate cerebral response to TBI and directly impact MRS 

diagnosis. 

Diagnostic MRS findings:  Infants, young children and adults show different, yet distinct, 

MRS patterns after TBI.  Mild traumatic brain injury (mTBI), currently defined as being 

associated with no abnormality on CT screening at admission, has been reported to show 

consistent reduction in the neuronal marker NAA and the ratio NAA/Cr in frontal white matter; 

recovery of NAA/Cr is delayed by 10-15 days compared to recovery from subjective 

neurological symptoms.  Thus, MRS after proven concussion establishes new guidelines for 

‘return to play’, setting this interval at 2 -3 weeks, compared to clinical symptoms, which may 

resolve within 5 – 7 days. 

Published studies after moderate to severe TBI are infrequent (except in infant shaken 

baby syndrome - see below)– partly a reflection of the convenience and speed of CT and the 

reluctance to move seriously ill patients to an MR scanner. It has been demonstrated (Kreis R et 

al. 1993; Ross BD et al. 1998) that 100% of such patients exhibit abnormal MRS with several 

distinct patterns of neurochemical disturbance: hypoxic-ischemic: hypo-osmolar: hyper-osmolar: 

neuronal-axonal injury.  Longitudinal MRS studies confirm consistency of these disparate 

neurochemical responses.  MRS was correlated with GCS measured at the time of MRS 

examinations; Rancho Outcome Score (ROS) was aligned with the earlier MRS findings; 

reduced NAA with increased amounts of both lactate and free lipid were predictive of poor 

outcome.  MRS was predictive of outcome after TBI in infants and children (Shutter L et al. 

2004).  Several studies (Haseler LJ et al. 1997; Ashwal S et al. 2006) confirm the diagnostic 

value of MRS abnormalities in shaken baby syndrome – loss of NAA is severe, as is the rapid 

accumulation of ‘lipid’ resonances in the MR spectrum.  In this unique setting the resonances 

labeled ‘lipid’ are more likely macromolecules of the phospholipid series supporting earlier 

identification of phospholipase activation after brain trauma (Haseler LJ et al. 1997; Farooqui 
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AA et al. 2006). Note that “macromolecules” (MM I – VI) which contribute broad resonances to 

the irregular baseline of the short echo time MR spectrum offer valuable additional chemical 

information in several neuropathologies, from stroke to multiple sclerosis (Graham GD et al. 

2001; Mader I et al. 2001; Seeger U et al. 2003). 

Supportive MRS findings:  Elevated ‘choline’ (Cho) post TBI may be interpreted as 

‘myelin damage’ or diffuse axonal injury (Ross BD et al. 1998).  Elevated myoinositol (mI) and 

glutamate+ glutamine (Glx) has been reported in the putamen of adult mTBI (Kierans AS et al. 

2014). 

Summary:  MRS has demonstrated diagnostic value early and late after mTBI and 

appears reliably predictive of outcome after mild, moderate - severe TBI in both adults and 

infants. 
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