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 Cancer has recently been described in terms of six key hallmarks and four emerging and enabling characteristics (1, 2). These include sustained proliferative growth, evasion of growth suppressors, replicative immortality, invasion and metastasis, induction of angiogenesis, resistance to cell death, deregulated cellular metabolism, avoidance of immune destruction, enhanced tumor-promoting inflammation, and genome instability. Importantly, many of these characteristics of cancer can be readily imaged using a range of magnetic resonance-based approaches. The presentation will focus on the most established methods used in preclinical studies of cancer models. The ability of cancer cells to sustain proliferative growth, evade growth suppressors, and achieve replicative immortality, are all associated with multiple oncogenic mutations that ultimately enable sustained tumor growth. This growth can be monitored in a nonspecific manner using standard MR imaging sequences (T2-weighted, T1-weighted, contrast–enhanced T1-weighted) that simply inform on anatomical structure and thus on tumor volume and tumor growth (3, 4). In addition, spectroscopy has been useful in detecting metabolic alterations that are directly associated with some specific oncogenic events that drive tumor development, and, as such, can serve as indirect biomarkers of those oncogenic drivers (5-12). Tumor angiogenesis, or the development of new vasculature, is essential to nourish the developing tumor and enhance its growth and metastasis. A major regulator of this process is vascular endothelial growth factor (VEGF also called vascular permeability factor), and one of the early responses to VEGF stimulation is an increase in vascular permeability.  Enhanced permeability can be imaged using dynamic contrast enhanced (DCE) MRI and is likely one of the most frequently imaged hallmark of cancer. In the clinical setting, DCE MRI using low molecular weight contrast agents such as GdDTPA is most common, providing information not only on tumor angiogenesis, but also on response to inhibitors of the angiogenic process (13). Preclinically, the use of macromolecular contrast agents provides a more specific measure of vascular permeability, and has been used in animal studies to probe the modulation of permeability with onset of cancer and in response to therapy (7, 14-16). Tumor cells are often resistant to programs of cell death, or apoptosis, and such programs can be activated by anticancer therapies. MR imaging of apoptosis has been achieved using both MRS and MRI approaches. Specifically, induction of apoptosis is associated with a detectable increase in the signal of mobile lipid droplets that is detectable in the 1H MRS spectrum at 0.9 and 1.3 ppm. In addition, an increase in the signal of polyunsatureated fatty acids has been reported during cell death (17, 18). Some contrast agents that specifically target apoptosis-associated cellular changes have also been reported (19, 20). Finally, downstream changes in diffusion have been useful in assessing cell death (21, 22). 
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Deregulated cellular energetics, and more broadly the metabolic reprogramming that occurs in cancer cells as part of their transformation, are detectable by MRS. Increases in choline-containing metabolites, and most notably in PC, are readily detectable by 1H and 31P MRS (8). Increased glycolysis and its inhibition following therapy can be probed using 13C MRS to assess the fate of 13C-labeled pyruvate (7, 10, 23-25), and more generally cancer cell metabolism can be investigated by monitoring the fate of specific 13C-labeled metabolic precursors (26-29). In summary, a range of MR-based imaging methods can be used to probe the anatomic, functional, and metabolic alterations that are associated with tumor development and progression.  
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