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Highlights 
 

 Principles of Magnetic Resonance Spectroscopy (MRS) and Spectroscopic Imaging (MRSI) 
relative to magnetic resonance imaging (MRI):  Chemical shift (spectral width), MR visible nuclei 
(natural abundance and gyromagnetic ratio, hyperpolarization); and pixels vs. voxel volumes. 
 

 Technical considerations specific to MRS:  Special coils (tuning); voxel dimensions (shimming, 
sequences: e.g. ISIS). 

 

 Review preclinical applications of MRS:  In vivo microenvironment, metabolism (tumor pH, 
glycolysis, lipid and phospholipid); (early) therapeutic response. 

 
SPECTROSCOPY 
 

 TARGET AUDIENCE:   Basic science and translational researchers and clinicians with an interest 
in preclinical in vivo studies involving the tissue or tumor microenvironment, metabolism and 
therapy response. 
 

 OUTCOME/OBJECTIVES:  Understand the principles, technical challenges and applications of in 
vivo MRS in preclinical studies.   

 

 PURPOSE:  MRS methodology provides tools for quantifying microenvironmental and metabolic 
parameters related to distinct pathologies, and to non-invasively observe dynamic changes in 
these parameters, in vivo, as related to enzymatic activities or therapeutic interventions in real-
time. 

 

 PRINCIPLES:  Unlike MRI, where image pixel values are typically generated from the spatially 
localized proton signal, which is predominately composed of water and fat, in vivo MRS allows 
for the quantification of metabolites that are of much lower natural abundance within a “voxel” 
volume.  Individual metabolites are separated on a spectrum within the frequency range 
examined and the degree of separation is a function of “chemical shift.”  For proton 
spectroscopy, the water peak must be suppressed to resolve the metabolite peaks of lower 
abundance.   In addition to 1H, a number of additional MR visible nuclei can be observed based 
on their natural abundance and gyromagnetic ratio, increasing the number of natural 
metabolites that can be studied by MRS.  Dynamic nuclear polarization (DNP) has allowed for 
the hyperpolarization of contrast agents, greatly increasing the signal to noise ratio, allowing for 
MRI of signal from nuclei other that 1H, e.g. 13C.  However, hyperpolarization can also be used 
for enhanced spectroscopic studies that enable the quantification of substrate metabolism in 
vivo.  In addition to MRS where the spectrum is generated from a single ”voxel” volume, MRSI 
allows for the generation of images based on metabolite quantifications generated from a 
number of adjacent spatially localized “voxel” volumes.  
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 TECHNICAL CONSIDERATIONS:  Major technical considerations in MRS will be briefly covered, 
which generally involve the need for special coils that can be dual tuned to the 1H resonance 
frequency for MRI and to frequencies for other nuclei to generate the spectrum.  MR images are 
needed for volume selection methods, e.g. ISIS.  Shimming is of greater importance for MRS 
relative to MRI and fat and water suppression (1H MRS) may be needed.  Sophisticated analyses 
e.g. deconvolution algorithms, may be needed for quantification of the different elements 
within in vivo spectra as peak resolution from tissue signals is low relative to NMR of extract 
samples. 

 

 APPLICATIONS:  Multiple MRS and MRSI approaches have been employed to non-invasively 
measure pH levels in the in vivo tissue microenvironment.  These include the use of measurable 
agents that have peaks with pH sensitive chemical shift and quantification of the conversion of 
hyperpolarized 13C-labeled bicarbonate to CO2.   Metabolism studies have included the in vivo 
quantification of intermediates of glycolysis, lipid metabolism and of phosphatidylcholine 
anabolism and catabolism.  Changes in these metabolite levels have been studied in the context 
of therapy response.  The ability to use DNP to hyperpolarize metabolic substrates has greatly 
enhanced studies of metabolism, allowing for the in vivo non-invasive quantification of enzyme 
activities, increasing the potential for clinical translation and use of this technology for diagnosis 
and early detection of therapeutic response. 

 

 CONCLUSION:  In vivo MRS and MRSI of small animal models can be used to explore basic 
research questions related to the tissue and tumor microenvironment, metabolism and to 
follow early therapy response.  There is also potential for translation and use of in vivo 
spectroscopy applications for use in the clinic for diagnosis and to follow early therapy response 
for guidance of patient care.   
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