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• Signal detection and detection noise in MRI are governed by electrodynamics 

• The dominant sources of thermal noise are charged particles and dipoles 

• The principle of reciprocity permits calculating signal and noise sensitivity as well as SNR 

• Such calculation yields guidelines for detector construction 

• Electrodynamics impose intrinsic SNR limits that differ between the near-field and wave regimes 

 

Outline 

All MR data, whether raw signals, images, or spectra, are inevitably contaminated by noise that is picked 
up during data acquisition. The ratio of the useful MR signal component and the noise level, i.e. the 
signal-to-noise ratio (SNR), is a key quality criterion for MR data sets. SNR requirements vary for 
different applications. Often an SNR on the order of 30 will be sufficient, while at SNRs below 10 many 
types of data are nearly useless. 

MR signals are inherently weak, so ensuring sufficient SNR is a concern for every MR experiment. 
Potentially excessive SNR can usually be converted into other benefits, such as higher spatial resolution, 
shorter scan time, and artifact reduction. Therefore, maximizing the basic SNR yield is always a central 
objective. In doing so there are many factors and parameters to consider, ranging from the baseline field 
strength B0 to the receiver hardware, image parameters, and sequence design. However, even with ideal 
hardware and optimal parameters the SNR yield will always remain limited. 

In the following, we study the physics that determine the noise and signal levels, means for improving 
and controlling the SNR, and the inherent limits imposed by the underlying electrodynamics. 

 

Thermal noise: Origin and characterization 

In MR practice the notion of noise is sometimes used in a fairly broad sense, including fluctuations in the 
MR signal, reconstruction errors, and artifacts of all sorts. In order to explore the limits of the SNR, 
however, we will use a more rigid definition of noise, encompassing only genuine stochastic, thermal 
fluctuations of the signal voltage. 

The cause of this fundamental type of noise is the thermal agitation of electric charges. Such charges exist 
everywhere in the experimental setup: in the sample to be imaged, in the receiver coil, including its 
circuitry, insulation and housing, and also in the entire environment. Highly mobile electrons abound in 
metals, e.g. in the coil conductor. Large amounts of positive and negative ions are present in live tissues 
and even dipolar molecules, such as water, contribute to thermal noise. 

The density and mobility of charges in each material is comprehensively described by its conductivity, 
which is frequency-dependent. At the relatively low frequencies used in in-vivo MR (typically on the 
order of 100 MHz) the conductivity of the relevant materials is largely due to individual charges such as 
electrons and ions (and less to dipoles). 
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Thermally moving charges contaminate the MR signal by electromagnetic interaction with the signal 
detector. The standard mode of MR detection is Faraday induction in a resonant receiver coil. It yields the 
MR signal as a voltage at the output of the detector circuit, oscillating at the Larmor frequency. Hence the 
relevant thermal noise is the corresponding frequency component of the voltage that moving charges 
generate at the detector terminals.  

The noise voltage UN results from random motion, hence it is itself random in nature and cannot be 
predicted. Yet its statistics can be readily characterized. Due to the stochastic nature of the underlying 
motion and the linearity of the electromagnetic coupling the noise voltage has a zero-mean Gaussian 
distribution. Hence it can be fully characterized by its mean square or, i.e., its variance 

 2
NUΨ = ,           [1] 

where the bar indicates temporal averaging. The noise level is the standard deviation of UN and given by 
the square root of Ψ. 

 

Quantifying thermal noise 

Quantifying thermal noise is straightforward experimentally. Using Eq. [1] its variance can be readily 
obtained from a sufficiently large set of voltage samples taken at the detector output in the absence of MR 
signal. 

However, for minimizing noise it is important to consider theoretically how the noise variance depends on 
the coil design and the experimental setup in general. To do so, in principle one must characterize all parts 
of the setup thermodynamically and establish their electromagnetic coupling with the coil terminals. 

Doing this in a straightforward fashion is a daunting task, implying the need to solve a set of Maxwell 
equations individually for each of a large number of sub-volumes in the setup. However, the same can be 
done much more efficiently using the so-called principle of reciprocity (1-3). Broadly speaking, with 
respect to thermal noise the principle of reciprocity says that the thermoelectric coupling between the 
setup and the coil terminals works equally both ways. So, instead of analyzing the generation of voltage 
by thermal motion one can as well study the generation of thermal motion by an external voltage applied 
to the coil terminals. 

To implement this idea we perform a thought experiment in which the coil circuit is used in transmission 
mode rather than for signal reception. At its terminals we apply an alternating voltage of frequency ω and 
suitable amplitude such that it drives a given reference current I0 (e.g. 1 mA) into the coil circuit. 
Throughout the coil, the sample, and their environment the voltage and current will generate spatially 
varying electric and magnetic fields E(ω,r), H(ω,r). Note that these field vectors have complex entries, 
reflecting both the amplitude and the phase of the field components, which equally oscillate at the 
frequency ω.  

For the generation of thermal energy, only the electric field E(ω,r) is relevant because (at least in 
biological samples) there are no significant magnetic mechanisms of dissipation. In conjunction with the 
local conductivity σ(ω,r), E(ω,r) causes currents with the density 

( , ) ( , ) ( , )j r r E rω = σ ω ω           [2] 

These currents dissipate power, converting electrical energy into thermal energy. The power dissipated in 
the volume element dV at the position r reads 

2
dP( , ) ( , ) ( , ) dV ( , ) ( , ) dVr j r E r r E rω = ω ⋅ ω = σ ω ω       [3] 

Viewing the dissipation as an ohmic loss it can be rewritten as  
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2
0dP( , ) dR( , ) Ir rω = ω  ,         [4] 

where  

2

2
0

1
dR( , ) ( , ) ( , ) dV

I
r r E rω = σ ω ω              [5] 

is the contribution of dV to the overall resistance. Here it is important to note that dR does not depend on 
the reference current because E(ω,r), H(ω,r) scale with I0. 

The power dissipated in this hypothetical experiment is the desired measure of thermoelectric coupling 
that can now be used to determine the noise voltage in the receive mode. In addition to the coupling 
coefficient the noise voltage also depends on the available thermal energy. Incorporating this factor, the 
contribution of the volume element dV to the total noise variance reads  

B
2
0

2k T( ) d
d ( , ) dP( , )

I

ωΨ ω = ω
π

r
r r ,         [6] 

where kB denotes the Boltzmann constant and T(r) the local absolute temperature. This equation 
illustrates that the noise variance is additive, just like the dissipated power, which means that every 
volume element makes an individual noise contribution and the total variance is simply the sum of these 
contributions. In terms of statistics it means that noise from different positions is independent and 
uncorrelated. The same holds for the spectral dimension. Thermal noise at any two different frequencies 
is uncorrelated. Hence in a frequency band between ω1 and ω2 we will find noise with a total variance of  

2

1

2B
2
0 V

2k d
T( ) ( , ) ( , ) dV

I

ω

ω

ωΨ = σ ω ω
π∫ ∫ r r E r ,       [7] 

where V denotes a sufficiently large volume, comprising the experimental setup and surrounding space 
where E(ω,r) is significant. In MR the relevant frequency bandwidth is usually much smaller than the 
Larmor frequency ω and σ(ω,r), E(ω,r) are practically constant within this band. Defining the bandwidth 
BW = (ω2−ω1)/2π, Eq. [7] can hence be simplified to 

2B
2
0 V

4BW k
T( ) ( , ) ( , ) dV

I
Ψ = σ ω ω∫ r r E r         [8] 

Using the analogy of ohmic resistance given in Eq. [5], this equation can be further simplified to 

B

V

4 BW k T( )dR( , )Ψ = ω∫ r r .         [9] 

Some further insight can be gained by considering that the temperatures of the sample and the coil circuit 
are approximately constant. Writing the integral separately for the sample, the circuit and the remaining 
environment we obtain 

E

B C C B S S B

V

4 BW k T R ( ) 4 BW k T R ( ) 4 BW k T( ) dR( , )Ψ = ω + ω + ω∫ r r     [10] 

where TC, TS and RC, RS denote the temperatures and total effective resistances of the circuit and the 
sample, respectively, and VE denotes the environment volume. For the circuit and sample contributions 
we have now arrived at the familiar formula for Johnson noise of a resistor, as derived by J.B. Johnson 
and H. Nyquist (4, 5).  
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In common MR applications with ω/2π on the order of 100 MHz and efficient receiver coils, the sample 
noise is usually dominant. However, circuit noise can become significant with small coils and at lower 
frequencies (6). Noise from the environment can often be neglected. However, it may become relevant at 
very high frequencies where propagating RF components gain in significance. 

 

Noise covariance of coil arrays 

So far we have considered signal detection with a single receiver coil. Arrays of multiple receiver coils 
are frequently used for enhancing the signal-to-noise ratio (SNR) (7) and for parallel imaging with 
enhanced encoding speed (8-13). In this case each coil has its individual noise variance, which can be 
calculated as described above. However, the multiple-coil situation is a bit more complicated because 
noise from different coils can be correlated. The correlation can be accounted for by generalizing the 
scalar variance Ψ to an nC×nC noise covariance matrix, where nC denotes the number of coils involved. Its 
entries are given by a generalized form of Eq. [8]: 

 * B
ij N,i N, j i j2

0 V

4BW k
U U T( ) ( , ) ( , ) ( , )dV

I
Ψ = = σ ω ω ⋅ ω∫ *r r E r E r ,     [11] 

where Ei, Ej denote the electric transmit fields of the coils i, j, respectively. For i = j Eq. [11] is equivalent 
to Eq. [8]. Hence the diagonal entries of the covariance matrix are the familiar single-coil noise variances, 
which are always real, non-negative numbers. The off-diagonal elements (i ≠ j) represent the noise 
correlation between the coils i, j. They are generally complex because correlated noise components can 
exhibit relative phase shifts. 

Equation 11 confirms the intuition that noise from a given volume element can contribute to noise 
correlation between two coils if it couples with both of their terminals. Nevertheless, the contributions 
will still be uncorrelated when the electric transmit fields of the two coils are orthogonal at the respective 
position.  

The equation also illustrates that correlated noise can stem from anywhere in the setup, from the sample, 
the circuitry, and the environment. Significant noise correlation can occur in particular among coils that 
couple directly, e.g. inductively. This is because coupling in the transmit mode causes the coils to 
generate common electric field components, which give rise to correlated noise contributions from across 
the entire setup. 

Following the same derivation as for the single-coil case, the noise covariance of a coil array can be 
equivalently viewed as arising from ohmic resistances, involving the notion of mutual resistance Rij (7). 

 

Reducing thermal noise 

The options for minimizing thermal noise can be summarized by studying the variable factors that 
determine the noise variance and covariance according to Eqs. [8] and [11], respectively. 

First, the bandwidth is an obvious handle on the noise level. Reducing the bandwidth reduces the noise 
variance proportionally. However it also decreases the efficiency of spatial signal encoding, with the 
bandwidth proportional to k-space speed. As a result the acquisition time grows as the square of the 
inverse noise level. Hence the factor BW permits mitigating noise only at the expense of scan speed (14). 

The temperature factor offers somewhat more freedom. Adjusting it is truly practical only for receiver 
coils and their circuitry and housing. Nevertheless, here cooling is actually a feasible and effective option 
(6,15). 
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The remaining factors are the conductivity, σ(ω,r), and the electric transmit field, E(ω,r). The role of the 
conductivity is ambiguous, which is best understood in the transmission picture. Remember that the input 
voltage and hence the electric field E(ω,r) are scaled such that they drive the net reference current I0 
between the coil terminals. Hence, broadly speaking, one can distinguish ‘favorable’ currents that 
contribute to this net current at the terminals and ‘adverse’ currents, which close on themselves and only 
contribute to dissipation. 

Clearly, the coil conductor should be highly conductive, forming the direct pathway for ‘favorable’ 
currents. This may seem paradoxical because the integrand in Eqs. [8], [11] is proportional to the 
conductivity. However, it is important to note that the electric transmit field implicitly depends on the 
conductivity. Enhancing the coil’s conductivity reduces the electric field inside it and hence overall 
reduces the noise integral. For high conductivity at room temperature copper and silver are preferred 
conductor materials. Additionally their conductivity can be enhanced again by cooling (6,15). The 
ultimate in conductivity is offered by superconductor materials (16-18), which however require extreme 
cooling and are much more difficult to handle than copper and silver. 

In the sample the conductivity plays a different role. Here the primary current in the coil generates 
magnetic field, which per se hardly causes dissipation. However its oscillation causes electric eddy fields, 
which give rise to ‘adverse’ currents that scale with the local conductivity. Hence, contrary to the coil 
conductor, conductivity in the object generally increases the thermal noise. So in principle it would be 
very desirable to reduce the sample’s conductivity, which however is usually not an option. Alternatively 
one can aim to minimize the electric eddy fields in the sample. However, as discussed later on, this 
approach is quite limited, too, because the underlying magnetic fields determine the coil’s sensitivity to 
the MR signal. 

For the environment, similar considerations hold as for the sample. Here, too, conductivity is mainly 
adverse and difficult to manipulate. The key difference is that both magnetic and electric transmit fields 
can be freely minimized in the environment, because MR sensitivity is not an issue there. 

In summary, there are limited means of enhancing the SNR by mitigating thermal noise. Noise 
contributions from coils and circuitry and from the environment can be addressed by technical measures. 
However, little can be done to control thermal noise that originates within the sample. In this respect, 
sample noise is the most fundamental. 

 

Sensitivity to MR signal 

In (nuclear) MRI and MRS the magnetic resonance signal stems from magnetic moments associated with 
the spin of atomic nuclei. So the signal sources are of magnetic nature, which distinguishes them 
fundamentally from the electric noise sources. As a consequence, the signal sensitivity of a receiver coil is 
associated with its magnetic rather than electric transmit field. 

Let H(ω,r) denote the magnetic field that the coil generates in our thought experiment, i.e. when driven 
with a reference current I0 of frequency ω. Then the nuclear magnetic moment of a voxel with volume ΔV 
at the position r, precessing at the frequency ω, induces the signal voltage (1, 3) 

S x y
0

M( ) V ( )
U (H ( , ) iH ( , ))

I

Δ μ ω= ω − ωr r
r r ,       [12]  

where M(r) denotes the local transverse magnetization, μ(r) denotes the local magnetic permeability and 
Hx(ω,r), Hy(ω,r) are the magnetic field components in the x and y direction, z being the direction of the 
static field B0. 
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Image SNR 

In standard Fourier MRI with a single coil, a certain number of signal samples are acquired and then 
subject to Fourier transform for reconstruction. For each image pixel the Fourier transform coherently 
averages the signal contributions from the corresponding voxel, while cancelling those of all other voxels. 
In this process, the concomitant noise is averaged, too, but incoherently because it is uncorrelated 
between different data samples. As a consequence, the image SNR grows as the square root of the number 
of samples: 

S

Samples

U ( )
SNR( ) N=

Ψ

r
r .         [13] 

However, unfortunately this does not mean that more data samples necessarily yield an image with higher 
SNR. Expanding US, Ψ according to Eqs. [8, 12] we obtain  

x y

Samples 2

B

V

( ) H ( , ) iH ( , )
SNR( ) N M( ) V

4 k BW T( ) ( , ) ( , ) dV

μ ω − ω
= Δ ω

σ ω ω∫

r r r
r r

r r E r
,    [14] 

reminding us to keep an eye also on the voxel volume ΔV. For instance, resolving more pixels in a given 
FOV reduces ΔV, reducing the SNR faster than it grows with the number of signal samples. Therefore 
images with higher resolution usually have lower SNR, despite requiring more data samples and more 
scan time. When isotropic resolution is desired, the voxel volume decreases even as the cube of the voxel 
diameter, resulting in an even more rapid SNR decay. Hence, for preventing critically low image SNR the 
choice of the resolution and slice thickness is especially important. 

Another important factor in Eq. [14] is the available transverse magnetization M(r), which itself depends 
on many parameters, such as the spin density and polarization, the relaxation times, the type of imaging 
sequence and its timing, the flip angles used etc. The most straightforward means of maximizing M(r) is 
the sequence design. Other ways of boosting it include contrast agents, the use of hyperpolarization, and 
increasing B0. The latter additionally enhances the signal frequency ω, which also helps the SNR 
according to Eq. [14]. However, enhancing the frequency incurs changes also in the electrodynamics, 
leading to some compensation of the SNR benefit by a concomitant increase in the noise level. 

The simplest means of improving the SNR, finally, is repeating a scan multiple times and averaging the 
results. In terms of Eq. [14] this approach corresponds to enhancing the overall number of signal samples 
(NSamples), while leaving all others factors unchanged. Hence the SNR grows as the square root of the 
number of scan repetitions. 

 

Ultimate intrinsic SNR 

For a given sample, field strength B0, and experimental protocol only the receiver coil(s) and circuitry and 
the electrodynamic properties of the environment remain to be optimized. As discussed above it is 
possible in principle to reduce the noise contributions from coil circuits and environment to an 
insignificant level. Then only the magnetic and electric transmit fields inside the sample remain for SNR 
optimization. Generally, the magnetic transmit field H(ω,r) is to be maximized, while minimizing the 
electric field E(ω,r). The laws of electrodynamics offer infinitely many degrees of freedom for this joint 
optimization. So one might hope to achieve arbitrarily high SNR with ideal coil arrays. However, this is 
not the case because the two types of fields are connected too closely. As mentioned earlier, all magnetic 
field in the sample gives rise to electric eddy fields. More generally, the magnetic and electric fields are 
coupled by Maxwell’s equations. 
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The limiting role of Maxwell’s equations can be explored by another thought experiment, assuming that 
any physically realizable coil or set of coils was available and all but sample noise was successfully 
suppressed. In this fashion the ultimate intrinsic SNR (19-21) can be determined for a given imaging task.  

Such investigation reveals that the behavior of RF fields differs fundamentally for different ranges of 
distance from their source. The near field is dominated by evanescent field components, which are of high 
amplitude but decay rapidly with distance. The extent of the near-field zone is roughly equal to the RF 
wavelength, which is inversely proportional to B0. Hence, MR detection is near-field dominated at low B0 
or from positions close to the object’s surface. At intermediate distance, wave behavior becomes more 
relevant. The possibility of field focusing leads to enhanced growth of the ultimate SNR at high B0 and 
from positions far away from the surface. 
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